Department Health Kinesiology and Applied Physiology, Concordia University, 7141 Sherbrooke Street W, SP-165.29, Montreal, QC, H4B 1R6, Canada.
Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, Canada.
BMC Musculoskelet Disord. 2023 Nov 23;24(1):909. doi: 10.1186/s12891-023-07029-x.
BACKGROUND: There is an increasing interest in assessing paraspinal morphology and composition in relation to low back pain (LBP). However, variations in methods and segmentation protocols contribute to the inconsistent findings in the literature. We present an on-line resource, the ParaspInaL muscLe segmentAtion pRoject (PILLAR, https://projectpillar.github.io/ ), to provide a detailed description and visual guide of a segmentation protocol by using the publicly available ITK-SNAP software and discuss related challenges when performing paraspinal lumbar muscles segmentations from magnetic resonance imaging (MRI). METHODS: T2-weighted and corresponding fat-water IDEAL axial MRI from 3 males and 3 females (2 chronic LBP and 1 control for each sex) were used to demonstrate our segmentation protocol for each lumbar paraspinal muscle (erector spinae, lumbar multifidus, quadratus lumborum and psoas) and lumbar spinal level (L1-L5). RESULTS: Proper segmentation requires an understanding of the anatomy of paraspinal lumbar muscles and the variations in paraspinal muscle morphology and composition due to age, sex, and the presence of LBP or related spinal pathologies. Other challenges in segmentation includes the presence and variations of intramuscular and epimuscular fat, and side-to-side asymmetry. CONCLUSION: The growing interest to assess the lumbar musculature and its role in the development and recurrence of LBP prompted the need for comprehensive and easy-to-follow resources, such as the PILLAR project to reduce inconsistencies in segmentation protocols. Standardizing manual muscle measurements from MRI will facilitate comparisons between studies while the field is progressively moving towards the automatization of paraspinal muscle measurements for large cohort studies.
背景:人们越来越感兴趣的是评估与下腰痛(LBP)相关的脊柱旁形态和组成。然而,方法和分割协议的变化导致文献中的结果不一致。我们提出了一个在线资源,即脊柱旁肌肉分割项目(PILLAR,https://projectpillar.github.io/),提供了一个使用公共可用的 ITK-SNAP 软件的分割协议的详细描述和可视化指南,并讨论了在从磁共振成像(MRI)进行脊柱旁腰椎肌肉分割时相关的挑战。
方法:使用来自 3 名男性和 3 名女性(每性别 2 名慢性 LBP 和 1 名对照)的 T2 加权和相应的水脂 IDEAL 轴向 MRI,演示了我们对每个腰椎脊柱旁肌肉(竖脊肌、腰椎多裂肌、腰方肌和腰大肌)和腰椎脊柱水平(L1-L5)的分割协议。
结果:正确的分割需要了解脊柱旁腰椎肌肉的解剖结构以及由于年龄、性别、LBP 或相关脊柱病变的存在而导致的脊柱旁肌肉形态和组成的变化。分割中的其他挑战包括肌内和肌外脂肪的存在和变化,以及侧-侧不对称。
结论:评估腰椎肌肉及其在 LBP 发展和复发中的作用的兴趣日益增加,促使需要全面且易于遵循的资源,如 PILLAR 项目,以减少分割协议中的不一致性。标准化 MRI 上的肌肉手动测量将有助于研究之间的比较,而该领域正在逐步朝着用于大型队列研究的脊柱旁肌肉自动测量方向发展。
BMC Musculoskelet Disord. 2018-5-7
J Back Musculoskelet Rehabil. 2016-8-10
J Orthop Sports Phys Ther. 2019-6
BMC Musculoskelet Disord. 2018-5-7
Lancet. 2018-3-21