Suppr超能文献

用于腰椎旁脊柱肌肉自动图像处理和评估的人群平均 MRI 图谱。

Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles.

机构信息

Robarts Research Institute, Western University, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.

PERFORM Centre, Concordia University, Montreal, Canada.

出版信息

Eur Spine J. 2018 Oct;27(10):2442-2448. doi: 10.1007/s00586-018-5704-z. Epub 2018 Jul 26.

Abstract

PURPOSE

Growing evidence suggests an association between lumbar paraspinal muscle degeneration and low back pain (LBP). Currently, time-consuming and laborious manual segmentations of paraspinal muscles are commonly performed on magnetic resonance imaging (MRI) axial scans. Automated image analysis algorithms can mitigate these drawbacks, but they often require individual MRIs to be aligned to a standard "reference" atlas. Such atlases are well established in automated neuroimaging analysis. Our aim was to create atlases of similar nature for automated paraspinal muscle measurements.

METHODS

Lumbosacral T2-weighted MRIs were acquired from 117 patients who experienced LBP, stratified by gender and age group (30-39, 40-49, and 50-59 years old). Axial MRI slices of the L4-L5 and L5-S1 levels at mid-disc were obtained and aligned using group-wise linear and nonlinear image registration to produce a set of unbiased population-averaged atlases for lumbar paraspinal muscles.

RESULTS

The resulting atlases represent the averaged morphology and MRI intensity features of the corresponding cohorts. Differences in paraspinal muscle shapes and fat infiltration levels with respect to gender and age can be visually identified from the population-averaged data from both linear and nonlinear registrations.

CONCLUSION

We constructed a set of population-averaged atlases for developing automated algorithms to help analyze paraspinal muscle morphometry from axial MRI scans. Such an advancement could greatly benefit the fields of paraspinal muscle and LBP research. These slides can be retrieved under Electronic Supplementary Material.

摘要

目的

越来越多的证据表明,腰椎旁脊柱肌肉退化与下腰痛(LBP)之间存在关联。目前,在磁共振成像(MRI)轴位扫描上对脊柱旁肌肉进行耗时且费力的手动分割是常见的。自动化图像分析算法可以减轻这些缺点,但它们通常需要将每个 MRI 对齐到标准的“参考”图谱。在自动化神经影像学分析中,这种图谱已经得到了很好的建立。我们的目标是创建类似性质的图谱,以便对脊柱旁肌肉进行自动测量。

方法

从经历 LBP 的 117 名患者中获取腰骶部 T2 加权 MRI,按性别和年龄组(30-39、40-49 和 50-59 岁)分层。在椎间盘中部获得 L4-L5 和 L5-S1 水平的轴向 MRI 切片,并使用组间线性和非线性图像配准进行对齐,以生成一组用于腰椎旁脊柱肌肉的无偏人群平均图谱。

结果

生成的图谱代表了相应队列的平均形态和 MRI 强度特征。从线性和非线性配准的人群平均数据中可以直观地识别出性别和年龄对脊柱旁肌肉形状和脂肪浸润水平的差异。

结论

我们构建了一组人群平均图谱,用于开发自动算法,以帮助分析来自轴向 MRI 扫描的脊柱旁肌肉形态。这种进步将极大地有益于脊柱旁肌肉和 LBP 研究领域。这些幻灯片可以在电子补充材料中检索到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验