Bi Zenghui, Hu Jiao, Xu Ming, Zhang Hua, Zhou Yingtang, Hu Guangzhi
School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202313434. doi: 10.1002/anie.202313434. Epub 2023 Dec 6.
The development of environmentally sustainable and highly efficient technologies for ammonia production is crucial for the future advancement of carbon-neutral energy systems. The nitrite reduction reaction (NO RR) for generating NH is a promising alternative to the low-efficiency nitrogen reduction reaction (NRR), owing to the low N=O bond energy and high solubility of nitrite. In this study, we designed a highly efficient dual-atom catalyst with Fe-Cu atomic pair sites (termed FeCu DAC), and the as-developed FeCu DAC was able to afford a remarkable NH yield of 24,526 μg h mg at -0.6 V, with a Faradaic Efficiency (FE) for NH production of 99.88 %. The FeCu DAC also exhibited exceptional catalytic activity and selectivity in a Zn-NO battery, achieving a record-breaking power density of 23.6 mW cm and maximum NH FE of 92.23 % at 20 mA cm . Theoretical simulation demonstrated that the incorporation of the Cu atom changed the energy of the Fe 3d orbital and lowered the energy barrier, thereby accelerating the NO RR. This study not only demonstrates the potential of galvanic nitrite-based cells for expanding the field of Zn-based batteries, but also provides fundamental interpretation for the synergistic effect in highly dispersed dual-atom catalysts.
开发环境可持续且高效的氨生产技术对于碳中性能源系统的未来发展至关重要。通过亚硝酸盐还原反应(NO RR)生成NH是低效率氮还原反应(NRR)的一种有前景的替代方法,这是由于N=O键能低以及亚硝酸盐的高溶解度。在本研究中,我们设计了一种具有Fe-Cu原子对位点的高效双原子催化剂(称为FeCu DAC),所开发的FeCu DAC在-0.6 V时能够提供24,526 μg h mg的显著NH产率,NH生产的法拉第效率(FE)为99.88%。FeCu DAC在Zn-NO电池中也表现出优异的催化活性和选择性,在20 mA cm时实现了破纪录的23.6 mW cm功率密度和92.23%的最大NH FE。理论模拟表明,Cu原子的引入改变了Fe 3d轨道的能量并降低了能垒,从而加速了NO RR。本研究不仅展示了基于亚硝酸盐的原电池在扩展锌基电池领域方面的潜力,还为高度分散的双原子催化剂中的协同效应提供了基本解释。