Kong Yan, Li Yan, Sang Xiahan, Yang Bin, Li Zhongjian, Zheng Sixing, Zhang Qinghua, Yao Siyu, Yang Xiaoxuan, Lei Lecheng, Zhou Shaodong, Wu Gang, Hou Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Research and Testing Centre of Material School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
Adv Mater. 2022 Jan;34(2):e2103548. doi: 10.1002/adma.202103548. Epub 2021 Nov 19.
Developing highly active and stable nitrogen reduction reaction (NRR) catalysts for NH electrosynthesis remains challenging. Herein, an unusual NRR electrocatalyst is reported with a single Zn(I) site supported on hollow porous N-doped carbon nanofibers (Zn N-C). The Zn N-C nanofibers exhibit an outstanding NRR activity with a high NH yield rate of ≈16.1 µg NH h mg at -0.3 V and Faradaic efficiency (FE) of 11.8% in alkaline media, surpassing other previously reported carbon-based NRR electrocatalysts with transition metals atomically dispersed and nitrogen coordinated (TM-N ) sites. N isotope labeling experiments confirm that the feeding nitrogen gas is the only nitrogen source in the production of NH . Structural characterization reveals that atomically dispersed Zn(I) sites with Zn-N moieties are likely the active sites, and the nearby graphitic N site synergistically facilitates the NRR process. In situ attenuated total reflectance-Fourier transform infrared measurement and theoretical calculation elucidate that the formation of initial *NNH intermediate is the rate-limiting step during the NH production. The graphitic N atoms adjacent to the tetracoordinate Zn-N moieties could significantly lower the energy barrier for this step to accelerate hydrogenation kinetics duing the NRR.
开发用于氨电合成的高活性和稳定的氮还原反应(NRR)催化剂仍然具有挑战性。在此,报道了一种不同寻常的NRR电催化剂,其具有负载在中空多孔氮掺杂碳纳米纤维(Zn N-C)上的单个Zn(I)位点。Zn N-C纳米纤维在碱性介质中表现出出色的NRR活性,在-0.3 V时NH产率约为16.1 μg NH h mg,法拉第效率(FE)为11.8%,超过了其他先前报道的具有原子分散的过渡金属和氮配位(TM-N )位点的碳基NRR电催化剂。氮同位素标记实验证实,进料氮气是NH生产中唯一的氮源。结构表征表明,具有Zn-N部分的原子分散的Zn(I)位点可能是活性位点,附近的石墨氮位点协同促进NRR过程。原位衰减全反射傅里叶变换红外测量和理论计算表明,初始*NNH中间体的形成是NH生产过程中的限速步骤。与四配位Zn-N部分相邻的石墨氮原子可以显著降低该步骤的能垒,以加速NRR过程中的氢化动力学。