Suppr超能文献

利用深度学习从静态PET图像生成全身FDG参数图像

Generation of Whole-Body FDG Parametric Images from Static PET Images Using Deep Learning.

作者信息

Miao Tianshun, Zhou Bo, Liu Juan, Guo Xueqi, Liu Qiong, Xie Huidong, Chen Xiongchao, Chen Ming-Kai, Wu Jing, Carson Richard E, Liu Chi

机构信息

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2023 May;7(5):465-472. doi: 10.1109/trpms.2023.3243576. Epub 2023 Feb 22.

Abstract

FDG parametric images show great advantage over static SUV images, due to the higher contrast and better accuracy in tracer uptake rate estimation. In this study, we explored the feasibility of generating synthetic images from static SUV ratio (SUVR) images using three configurations of U-Nets with different sets of input and output image patches, which were the U-Nets with single input and single output (), multiple inputs and single output (), and single input and multiple outputs (). SUVR images were generated by averaging three 5-min dynamic SUV frames starting at 60 minutes post-injection, and then normalized by the mean SUV values in the blood pool. The corresponding ground truth images were derived using Patlak graphical analysis with input functions from measurement of arterial blood samples. Even though the synthetic values were not quantitatively accurate compared with ground truth, the linear regression analysis of joint histograms in the voxels of body regions showed that the mean values were higher between U-Net prediction and ground truth (0.596, 0.580, 0.576 in , and ), than that between SUVR and ground truth (0.571). In terms of similarity metrics, the synthetic images were closer to the ground truth images (mean = 0.729, 0.704, 0.704 in , and ) than the input SUVR images (mean = 0.691). Therefore, it is feasible to use deep learning networks to estimate surrogate map of parametric images from static SUVR images.

摘要

由于在示踪剂摄取率估计方面具有更高的对比度和更好的准确性,FDG参数图像相对于静态SUV图像显示出巨大优势。在本研究中,我们探讨了使用具有不同输入和输出图像块集的三种U-Net配置从静态SUV比率(SUVR)图像生成合成图像的可行性,这三种配置分别是单输入单输出U-Net、多输入单输出U-Net和单输入多输出U-Net。SUVR图像通过对注射后60分钟开始的三个5分钟动态SUV帧求平均生成,然后用血池中的平均SUV值进行归一化。相应的真实图像通过Patlak图形分析并使用来自动脉血样本测量的输入函数得出。尽管与真实情况相比,合成值在定量上并不准确,但对身体区域体素中联合直方图的线性回归分析表明,U-Net预测与真实情况之间的平均相关系数(分别为0.596、0.580、0.576)高于SUVR与真实情况之间的平均相关系数(0.571)。就相似性指标而言,合成图像比输入的SUVR图像(平均相关系数 = 0.691)更接近真实图像(分别为0.729、0.704、0.704)。因此,使用深度学习网络从静态SUVR图像估计参数图像的替代图是可行的。

相似文献

1
Generation of Whole-Body FDG Parametric Images from Static PET Images Using Deep Learning.
IEEE Trans Radiat Plasma Med Sci. 2023 May;7(5):465-472. doi: 10.1109/trpms.2023.3243576. Epub 2023 Feb 22.
2
Generation of synthetic PET images of synaptic density and amyloid from F-FDG images using deep learning.
Med Phys. 2021 Sep;48(9):5115-5129. doi: 10.1002/mp.15073. Epub 2021 Jul 27.
3
Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks.
Eur J Nucl Med Mol Imaging. 2022 Oct;49(12):4048-4063. doi: 10.1007/s00259-022-05867-w. Epub 2022 Jun 18.
4
Generation of parametric K images for FDG PET using two 5-min scans.
Med Phys. 2021 Sep;48(9):5219-5231. doi: 10.1002/mp.15113. Epub 2021 Aug 13.
6
Parametric Net Influx Rate Images of Ga-DOTATOC and Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast.
J Nucl Med. 2017 May;58(5):744-749. doi: 10.2967/jnumed.116.180380. Epub 2016 Oct 27.
7
A deep neural network for parametric image reconstruction on a large axial field-of-view PET.
Eur J Nucl Med Mol Imaging. 2023 Feb;50(3):701-714. doi: 10.1007/s00259-022-06003-4. Epub 2022 Nov 3.
9
Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning.
Eur J Nucl Med Mol Imaging. 2022 Jul;49(8):2482-2492. doi: 10.1007/s00259-022-05731-x. Epub 2022 Mar 21.
10
Impact of Tissue Classification in MRI-Guided Attenuation Correction on Whole-Body Patlak PET/MRI.
Mol Imaging Biol. 2019 Dec;21(6):1147-1156. doi: 10.1007/s11307-019-01338-1.

本文引用的文献

1
Deep learning-based dynamic PET parametric K image generation from lung static PET.
Eur Radiol. 2023 Apr;33(4):2676-2685. doi: 10.1007/s00330-022-09237-w. Epub 2022 Nov 18.
2
Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning.
Eur J Nucl Med Mol Imaging. 2022 Jul;49(8):2482-2492. doi: 10.1007/s00259-022-05731-x. Epub 2022 Mar 21.
3
Total-Body PET Multiparametric Imaging of Cancer Using a Voxelwise Strategy of Compartmental Modeling.
J Nucl Med. 2022 Aug;63(8):1274-1281. doi: 10.2967/jnumed.121.262668. Epub 2021 Nov 18.
4
Generation of parametric K images for FDG PET using two 5-min scans.
Med Phys. 2021 Sep;48(9):5219-5231. doi: 10.1002/mp.15113. Epub 2021 Aug 13.
5
Generation of synthetic PET images of synaptic density and amyloid from F-FDG images using deep learning.
Med Phys. 2021 Sep;48(9):5115-5129. doi: 10.1002/mp.15073. Epub 2021 Jul 27.
6
CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network.
J Nucl Cardiol. 2022 Oct;29(5):2235-2250. doi: 10.1007/s12350-021-02672-0. Epub 2021 Jun 3.
7
PET Parametric Imaging: Past, Present, and Future.
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):663-675. doi: 10.1109/trpms.2020.3025086. Epub 2020 Sep 21.
8
Assessment of population-based input functions for Patlak imaging of whole body dynamic F-FDG PET.
EJNMMI Phys. 2020 Nov 23;7(1):67. doi: 10.1186/s40658-020-00330-x.
9
Deep learning on image denoising: An overview.
Neural Netw. 2020 Nov;131:251-275. doi: 10.1016/j.neunet.2020.07.025. Epub 2020 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验