Suppr超能文献

利用深度学习从静态PET图像生成全身FDG参数图像

Generation of Whole-Body FDG Parametric Images from Static PET Images Using Deep Learning.

作者信息

Miao Tianshun, Zhou Bo, Liu Juan, Guo Xueqi, Liu Qiong, Xie Huidong, Chen Xiongchao, Chen Ming-Kai, Wu Jing, Carson Richard E, Liu Chi

机构信息

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2023 May;7(5):465-472. doi: 10.1109/trpms.2023.3243576. Epub 2023 Feb 22.

Abstract

FDG parametric images show great advantage over static SUV images, due to the higher contrast and better accuracy in tracer uptake rate estimation. In this study, we explored the feasibility of generating synthetic images from static SUV ratio (SUVR) images using three configurations of U-Nets with different sets of input and output image patches, which were the U-Nets with single input and single output (), multiple inputs and single output (), and single input and multiple outputs (). SUVR images were generated by averaging three 5-min dynamic SUV frames starting at 60 minutes post-injection, and then normalized by the mean SUV values in the blood pool. The corresponding ground truth images were derived using Patlak graphical analysis with input functions from measurement of arterial blood samples. Even though the synthetic values were not quantitatively accurate compared with ground truth, the linear regression analysis of joint histograms in the voxels of body regions showed that the mean values were higher between U-Net prediction and ground truth (0.596, 0.580, 0.576 in , and ), than that between SUVR and ground truth (0.571). In terms of similarity metrics, the synthetic images were closer to the ground truth images (mean = 0.729, 0.704, 0.704 in , and ) than the input SUVR images (mean = 0.691). Therefore, it is feasible to use deep learning networks to estimate surrogate map of parametric images from static SUVR images.

摘要

由于在示踪剂摄取率估计方面具有更高的对比度和更好的准确性,FDG参数图像相对于静态SUV图像显示出巨大优势。在本研究中,我们探讨了使用具有不同输入和输出图像块集的三种U-Net配置从静态SUV比率(SUVR)图像生成合成图像的可行性,这三种配置分别是单输入单输出U-Net、多输入单输出U-Net和单输入多输出U-Net。SUVR图像通过对注射后60分钟开始的三个5分钟动态SUV帧求平均生成,然后用血池中的平均SUV值进行归一化。相应的真实图像通过Patlak图形分析并使用来自动脉血样本测量的输入函数得出。尽管与真实情况相比,合成值在定量上并不准确,但对身体区域体素中联合直方图的线性回归分析表明,U-Net预测与真实情况之间的平均相关系数(分别为0.596、0.580、0.576)高于SUVR与真实情况之间的平均相关系数(0.571)。就相似性指标而言,合成图像比输入的SUVR图像(平均相关系数 = 0.691)更接近真实图像(分别为0.729、0.704、0.704)。因此,使用深度学习网络从静态SUVR图像估计参数图像的替代图是可行的。

相似文献

1
Generation of Whole-Body FDG Parametric Images from Static PET Images Using Deep Learning.利用深度学习从静态PET图像生成全身FDG参数图像
IEEE Trans Radiat Plasma Med Sci. 2023 May;7(5):465-472. doi: 10.1109/trpms.2023.3243576. Epub 2023 Feb 22.

本文引用的文献

7
PET Parametric Imaging: Past, Present, and Future.正电子发射断层显像(PET)参数成像:过去、现在与未来
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):663-675. doi: 10.1109/trpms.2020.3025086. Epub 2020 Sep 21.
9
Deep learning on image denoising: An overview.基于深度学习的图像去噪技术综述。
Neural Netw. 2020 Nov;131:251-275. doi: 10.1016/j.neunet.2020.07.025. Epub 2020 Aug 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验