Zebarjadi Mona, Akbari Omid
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA.
Entropy (Basel). 2023 Nov 14;25(11):1540. doi: 10.3390/e25111540.
Thomson heat absorption corresponding to changes in the Seebeck coefficient with respect to temperature enables the design of thermoelectric coolers wherein Thomson cooling is the dominant term, i.e., the Thomson coolers. Thomson coolers extend the working range of Peltier coolers to larger temperature differences and higher electrical currents. The Thomson coefficient is small in most materials. Recently, large Thomson coefficient values have been measured attributed to thermally induced phase change during magnetic and structural phase transitions. The large Thomson coefficient observed can result in the design of highly efficient Thomson coolers. This work analyzes the performance of Thomson coolers analytically and sets the metrics for evaluating the performance of materials as their constituent components. The maximum heat flux when the Thomson coefficient is constant is obtained and the performance is compared to Peltier coolers. Three dimensionless parameters are introduced which determine the performance of the Thomson coolers and can be used to analyze the coefficient of performance, the maximum heat flux, and the maximum temperature difference of a Thomson cooler.
与塞贝克系数随温度变化相对应的汤姆逊热吸收使得能够设计出以汤姆逊冷却为主导项的热电冷却器,即汤姆逊冷却器。汤姆逊冷却器将珀耳帖冷却器的工作范围扩展到更大的温度差和更高的电流。在大多数材料中,汤姆逊系数较小。最近,由于磁相变和结构相变过程中的热致相变,已经测量到了较大的汤姆逊系数值。观察到的大汤姆逊系数可用于设计高效的汤姆逊冷却器。这项工作对汤姆逊冷却器的性能进行了分析,并设定了评估材料作为其组成部件时性能的指标。获得了汤姆逊系数恒定时的最大热流,并将其性能与珀耳帖冷却器进行了比较。引入了三个无量纲参数,它们决定了汤姆逊冷却器的性能,可用于分析汤姆逊冷却器的性能系数、最大热流和最大温差。