Suppr超能文献

纳米纤维非织造织物传声损失的估算:传统模型与简化柔软框架模型的比较

Estimation of Sound Transmission Loss in Nanofiber Nonwoven Fabrics: Comparison of Conventional Models and the Simplified Limp Frame Model.

作者信息

Sakamoto Shuichi, Hasegawa Tsukasa, Ikeda Koki

机构信息

Department of Engineering, Niigata University, Ikarashi 2-no-cho 8050, Nishi-ku, Niigata City 950-2181, Japan.

Graduate School of Science and Technology, Niigata University, Ikarashi 2-no-cho 8050, Nishi-ku, Niigata City 950-2181, Japan.

出版信息

Nanomaterials (Basel). 2023 Nov 14;13(22):2947. doi: 10.3390/nano13222947.

Abstract

Although the sound absorption coefficients of conventional and nanofiber nonwoven fabrics (NF-NWFs) have been the subject of many previous studies, few studies have considered the estimation of transmission loss. Reported herein is an experimental and theoretical study into estimating the transmission loss of NF-NWFs using four estimation models, i.e., the Rayleigh, Miki, and Komatsu models, and the simplified limp frame model (SLFM), with the model results compared against the experimental data. The transmission loss of the NF-NWF was determined from the propagation constant, and characteristic impedance was calculated using the estimation model and the transfer matrix method. The validity of each estimation method was examined by comparing its estimated values with the experimental values measured using a four-microphone impedance measurement tube. The proposed SLFM is more suitable for estimating the transmission loss of NF-NWFs than the conventional Rayleigh, Miki, and Komatsu models.

摘要

尽管传统非织造织物和纳米纤维非织造织物(NF-NWFs)的吸声系数已成为许多先前研究的主题,但很少有研究考虑传输损失的估计。本文报道了一项实验和理论研究,该研究使用四种估计模型,即瑞利模型、三木模型、小松模型和简化柔性框架模型(SLFM)来估计NF-NWFs的传输损失,并将模型结果与实验数据进行比较。NF-NWFs的传输损失由传播常数确定,并使用估计模型和传递矩阵法计算特征阻抗。通过将每种估计方法的估计值与使用四麦克风阻抗测量管测量的实验值进行比较,检验了每种估计方法的有效性。与传统的瑞利模型、三木模型和小松模型相比,所提出的SLFM更适合于估计NF-NWFs的传输损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb70/10675204/b3101a29cf6b/nanomaterials-13-02947-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验