文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于肺泡骨组织工程的聚己内酯基支架:3D 打印技术中的仿生方法。

Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique.

机构信息

Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland.

Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland.

出版信息

Int J Mol Sci. 2023 Nov 10;24(22):16180. doi: 10.3390/ijms242216180.


DOI:10.3390/ijms242216180
PMID:38003368
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10671727/
Abstract

The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.

摘要

牙槽骨是一种独特类型的骨骼,骨组织工程(BTE)的目标是开发促进其再生的方法。目前,一种新兴趋势涉及使用三维(3D)打印技术制造基于聚己内酯(PCL)的支架,以增强成骨架构。这些支架进一步用羟基磷灰石(HA)、I 型胶原(CGI)或壳聚糖(CS)进行修饰,以赋予高成骨潜力。与细胞治疗相结合,这些支架可能成为骨自体移植物的有吸引力的替代物。本文从仿生学的角度讨论了设计 3D 打印 PCL 基支架方面的研究空白。文章首先对生物矿化(biomineralization)和骨化进行了系统分析,以优化支架的结构、力学、降解和表面性能。这种支架设计策略为开发一条研究途径奠定了基础,该途径涵盖了分子动力学(MD)模拟和制造技术等基本原理。最终,这为系统的体外和体内研究铺平了道路,为潜在的临床应用提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/803bdf0cf41a/ijms-24-16180-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/5284601fe302/ijms-24-16180-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/2466e877e100/ijms-24-16180-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/0b1ae004d5ed/ijms-24-16180-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/55229252ed36/ijms-24-16180-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/1b6bb88dd467/ijms-24-16180-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/f9a704f1d111/ijms-24-16180-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/64db09560c7d/ijms-24-16180-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/3d0722d09e2e/ijms-24-16180-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/ea4e7195f93c/ijms-24-16180-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/f752778b80bd/ijms-24-16180-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/78d71802c890/ijms-24-16180-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/803bdf0cf41a/ijms-24-16180-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/5284601fe302/ijms-24-16180-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/2466e877e100/ijms-24-16180-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/0b1ae004d5ed/ijms-24-16180-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/55229252ed36/ijms-24-16180-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/1b6bb88dd467/ijms-24-16180-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/f9a704f1d111/ijms-24-16180-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/64db09560c7d/ijms-24-16180-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/3d0722d09e2e/ijms-24-16180-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/ea4e7195f93c/ijms-24-16180-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/f752778b80bd/ijms-24-16180-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/78d71802c890/ijms-24-16180-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/10671727/803bdf0cf41a/ijms-24-16180-g012.jpg

相似文献

[1]
Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique.

Int J Mol Sci. 2023-11-10

[2]
Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2019-7-6

[3]
Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.

Biomed Mater. 2021-10-29

[4]
Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior.

J Mater Sci Mater Med. 2022-3-10

[5]
[Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018-2-15

[6]
3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.

Acta Biomater. 2017-12

[7]
Biomimetic Hydroxyapatite on 3D-Printed Nanoattapulgite/Polycaprolactone Scaffolds for Bone Regeneration of Rat Cranium Defects.

ACS Biomater Sci Eng. 2024-1-8

[8]
Osteoregenerative Potential of 3D-Printed Poly -Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells.

Int J Mol Sci. 2023-3-3

[9]
Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.

Acta Biomater. 2019-3-21

[10]
Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration.

ACS Appl Mater Interfaces. 2024-4-17

引用本文的文献

[1]
Zinc Doped Synthetic Polymer Composites for Bone Regeneration: A Promising Strategy to Repair Bone Defects.

Int J Nanomedicine. 2025-7-1

[2]
Biodegradation of Poly(ε-caprolactone): Microorganisms, Enzymes, and Mechanisms.

Int J Mol Sci. 2025-6-18

[3]
3D-Printable Photothermal and Temperature-Controlled Polycaprolactone Scaffolds Incorporating Gold Plasmonic Blackbodies for Bone Tissue Engineering.

ACS Appl Mater Interfaces. 2025-5-21

[4]
Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel). 2025-1-14

[5]
Three-Dimensional-Printed Composite Scaffolds Containing Poly-ε-Caprolactone and Strontium-Doped Hydroxyapatite for Osteoporotic Bone Restoration.

Polymers (Basel). 2024-5-27

[6]
Recent Advances in Scaffolds for Guided Bone Regeneration.

Biomimetics (Basel). 2024-3-1

[7]
Obtaining Polyvinylpyrrolidone Fibers Using the Electroforming Method with the Inclusion of Microcrystalline High-Temperature Phosphates.

Int J Mol Sci. 2024-2-15

本文引用的文献

[1]
Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure.

Front Bioeng Biotechnol. 2023-9-18

[2]
Evaluation of the In Vitro Antimicrobial Efficacy against and of a Novel 3D-Printed Degradable Drug Delivery System Based on Polycaprolactone/Chitosan/Vancomycin-Preclinical Study.

Pharmaceutics. 2023-6-18

[3]
Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering.

Int J Biol Macromol. 2023-7-15

[4]
Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing.

Polymers (Basel). 2023-5-22

[5]
Biomineralization: A new tool for developing eco-sustainable Ti-doped hydroxyapatite-based hybrid UV filters.

Biomater Adv. 2023-8

[6]
Fabrication of Poly(ε-caprolactone)-embedded Lignin-Chitosan Nanocomposite Porous Scaffolds from Pickering Emulsions.

Langmuir. 2023-5-23

[7]
Recent Clinical Treatment and Basic Research on the Alveolar Bone.

Biomedicines. 2023-3-10

[8]
Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications.

ACS Appl Bio Mater. 2023-9-18

[9]
Potential of an Aligned Porous Hydrogel Scaffold Combined with Periodontal Ligament Stem Cells or Gingival Mesenchymal Stem Cells to Promote Tissue Regeneration in Rat Periodontal Defects.

ACS Biomater Sci Eng. 2023-4-10

[10]
A seminal perspective on the role of chondroitin sulfate in biomineralization.

Carbohydr Polym. 2023-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索