Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
Aurora Cannabis Inc., Comox, BC V9M 4A1, Canada.
Int J Mol Sci. 2023 Nov 12;24(22):16232. doi: 10.3390/ijms242216232.
Soybean cyst nematode (SCN, , Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean-SCN interactions and offer potential targets for nematode disease management.
大豆胞囊线虫(SCN,, Ichinohe)对全球大豆生产构成重大威胁,因此需要全面了解大豆植株对 SCN 的反应,以确保实施有效的管理措施。在这项研究中,我们对 SCN 抗性品系 PI 437654、548402 和 88788 以及易感系(Lee 74)进行了 SCN HG 型 1.2.5.7 的双 RNA-seq 分析。我们旨在阐明大豆中的抗性机制,并鉴定出导致抗性丧失的 SCN 毒力基因。转录组和途径分析表明,苯丙烷、MAPK 信号转导、植物激素信号转导和次生代谢物途径是抗性机制的关键因素。值得注意的是,PI 437654 表现出完全抗性,并且与细胞壁强化、氧化酶、ROS 清除剂和钙传感器相关的基因表达存在显著差异,这些基因与水杨酸生物合成有关。此外,具有不同免疫水平的宿主研究和易感系揭示了 SCN 的发病机制及其对毒力基因的调节以逃避宿主免疫。这些新发现为大豆-SCN 相互作用的分子机制提供了深入了解,并为线虫病管理提供了潜在的靶标。