文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

含硝酸咪康唑的新型跨质体凝胶;研制、表征及增强的抗真菌活性

Novel Transethosomal Gel Containing Miconazole Nitrate; Development, Characterization, and Enhanced Antifungal Activity.

作者信息

Asghar Zara, Jamshaid Talha, Sajid-Ur-Rehman Muhammad, Jamshaid Usama, Gad Heba A

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.

Department of Pharmaceutics, Faculty of Pharmacy, Strasbourg University, 67084 Strasbourg, France.

出版信息

Pharmaceutics. 2023 Oct 27;15(11):2537. doi: 10.3390/pharmaceutics15112537.


DOI:10.3390/pharmaceutics15112537
PMID:38004517
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10675164/
Abstract

Miconazole nitrate (MCNR) is a BCS class II antifungal drug with poor water solubility. Although numerous attempts have been made to increase its solubility, formulation researchers struggle with this significant issue. Transethosomes are promising novel nanocarriers for improving the solubility and penetration of drugs that are inadequately soluble and permeable. Thus, the objective of this study was to develop MCNR-loaded transethosomal gel in order to enhance skin permeation and antifungal activity. MCNR-loaded transethosomes (MCNR-TEs) were generated using the thin film hydration method and evaluated for their zeta potential, particle size, polydispersity index, and entrapment efficiency (EE%). SEM, FTIR, and DSC analyses were also done to characterize the optimized formulation of MCNR-TEs (MT-8). The optimized formulation of MCNR-TEs was incorporated into a carbopol 934 gel base to form transethosomal gel (MNTG) that was subjected to ex vivo permeation and drug release studies. In vitro antifungal activity was carried out against through the cup plate technique. An in vivo skin irritation test was also performed on Wistar albino rats. MT-8 displayed smooth spherical transethosomal nanoparticles with the highest EE% (89.93 ± 1.32%), lowest particle size (139.3 ± 1.14 nm), polydispersity index (0.188 ± 0.05), and zeta potential (-18.1 ± 0.10 mV). The release profile of MT-8 displayed an initial burst followed by sustained release, and the release data were best fitted with the Korsmeyer-Peppas model. MCNR-loaded transethosomal gel was stable and showed a non-Newtonian flow. It was found that ex vivo drug permeation of MNTG was 48.76%, which was significantly higher than that of MNPG (plain gel) ( ≤ 0.05) following a 24-h permeation study. The prepared MCNR transethosomal gel exhibited increased antifungal activity, and its safety was proven by the results of an in vivo skin irritation test. Therefore, the developed transethosomal gel can be a proficient drug delivery system via a topical route with enhanced antifungal activity and skin permeability.

摘要

硝酸咪康唑(MCNR)是一种生物药剂学分类系统(BCS)II类抗真菌药物,水溶性较差。尽管人们已多次尝试提高其溶解度,但制剂研究人员仍在努力解决这一重大问题。传递体是一种很有前景的新型纳米载体,可用于改善难溶性和低渗透性药物的溶解度和渗透性。因此,本研究的目的是开发载有MCNR的传递体凝胶,以增强皮肤渗透和抗真菌活性。采用薄膜水化法制备了载有MCNR的传递体(MCNR-TEs),并对其zeta电位、粒径、多分散指数和包封率(EE%)进行了评估。还进行了扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)分析,以表征MCNR-TEs(MT-8)的优化制剂。将MCNR-TEs的优化制剂加入卡波姆934凝胶基质中,制成传递体凝胶(MNTG),并进行体外渗透和药物释放研究。通过杯碟法对其进行体外抗真菌活性研究。还对Wistar白化大鼠进行了体内皮肤刺激性试验。MT-8呈现出光滑的球形传递体纳米颗粒,具有最高的包封率(89.93±1.32%)、最低的粒径(139.3±1.14nm)、多分散指数(0.188±0.05)和zeta电位(-18.1±0.10mV)。MT-8的释放曲线显示出初始突释,随后是持续释放,释放数据最符合Korsmeyer-Peppas模型。载有MCNR的传递体凝胶稳定,呈现非牛顿流体特性。在24小时的渗透研究后发现,MNTG的体外药物渗透率为48.76%,显著高于普通凝胶(MNPG)(P≤0.05)。所制备的载有MCNR的传递体凝胶表现出增强的抗真菌活性,体内皮肤刺激性试验结果证明了其安全性。因此,所开发的传递体凝胶可以成为一种高效的局部给药系统,具有增强的抗真菌活性和皮肤渗透性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/0fb087da6254/pharmaceutics-15-02537-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/1c5d240ea90e/pharmaceutics-15-02537-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/385240691b47/pharmaceutics-15-02537-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/47784d0f180b/pharmaceutics-15-02537-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/e8d0b329b98c/pharmaceutics-15-02537-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/8b867615f0ca/pharmaceutics-15-02537-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/bfa0bc145653/pharmaceutics-15-02537-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/39d161192624/pharmaceutics-15-02537-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/b862b946cee9/pharmaceutics-15-02537-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/cb9b56ce6700/pharmaceutics-15-02537-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/6f17ae27c070/pharmaceutics-15-02537-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/0fb087da6254/pharmaceutics-15-02537-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/1c5d240ea90e/pharmaceutics-15-02537-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/385240691b47/pharmaceutics-15-02537-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/47784d0f180b/pharmaceutics-15-02537-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/e8d0b329b98c/pharmaceutics-15-02537-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/8b867615f0ca/pharmaceutics-15-02537-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/bfa0bc145653/pharmaceutics-15-02537-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/39d161192624/pharmaceutics-15-02537-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/b862b946cee9/pharmaceutics-15-02537-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/cb9b56ce6700/pharmaceutics-15-02537-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/6f17ae27c070/pharmaceutics-15-02537-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60d/10675164/0fb087da6254/pharmaceutics-15-02537-g011.jpg

相似文献

[1]
Novel Transethosomal Gel Containing Miconazole Nitrate; Development, Characterization, and Enhanced Antifungal Activity.

Pharmaceutics. 2023-10-27

[2]
In Vivo Evaluation of Miconazole-Nitrate-Loaded Transethosomal Gel Using a Rat Model Infected with .

Pharmaceuticals (Basel). 2024-4-24

[3]
Transethosomes of Econazole Nitrate for Transdermal Delivery: Development, In-vitro Characterization, and Ex-vivo Assessment.

Pharm Nanotechnol. 2018

[4]
Fabrication and Evaluation of Voriconazole Loaded Transethosomal Gel for Enhanced Antifungal and Antileishmanial Activity.

Molecules. 2022-5-23

[5]
Assessing the Efficacy of Berberine Hydrochloride-loaded Transethosomal Gel System in Treating Dermatophytosis Caused by in , and Models.

Curr Drug Res Rev. 2024

[6]
Tioconazole-Loaded Transethosomal Gel Using Box-Behnken Design for Topical Applications: In Vitro, In Vivo, and Molecular Docking Approaches.

Gels. 2023-9-21

[7]
In vitro and in vivo characterization of Miconazole Nitrate loaded transethosomes for the treatment of Cutaneous Candidiasis.

Int J Pharm. 2023-11-25

[8]
Development and evaluation of nanoemulsion gel loaded with bioactive extract of var. : A novel approach for enhanced skin permeability and antifungal activity.

Heliyon. 2024-7-24

[9]
Quality by Design Assisted Development of Luliconazole Transethosomes in Gel for the Management of Infection.

Assay Drug Dev Technol. 2024-1

[10]
Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation.

Drug Des Devel Ther. 2018-4-9

引用本文的文献

[1]
Transethosomes: A Comprehensive Review of Ultra-Deformable Vesicular Systems for Enhanced Transdermal Drug Delivery.

AAPS PharmSciTech. 2025-1-17

[2]
Characterization and Evaluation of the Cytotoxicity of Pregabalin Gels for Oral Application.

Pharmaceuticals (Basel). 2024-9-4

[3]
Maximizing the Use of Ivermectin Transethosomal Cream in the Treatment of Scabies.

Pharmaceutics. 2024-8-1

[4]
Development and evaluation of nanoemulsion gel loaded with bioactive extract of var. : A novel approach for enhanced skin permeability and antifungal activity.

Heliyon. 2024-7-24

[5]
Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations.

Pharmaceutics. 2024-6-16

[6]
In Vivo Evaluation of Miconazole-Nitrate-Loaded Transethosomal Gel Using a Rat Model Infected with .

Pharmaceuticals (Basel). 2024-4-24

[7]
The Exploitation of Sodium Deoxycholate-Stabilized Nano-Vesicular Gel for Ameliorating the Antipsychotic Efficiency of Sulpiride.

Gels. 2024-3-31

[8]
Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation.

Pharmaceutics. 2024-2-4

本文引用的文献

[1]
Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review.

Pharmaceuticals (Basel). 2022-4-10

[2]
Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy.

Biomed Res Int. 2022

[3]
Development of stable tocopherol succinate-loaded ethosomes to enhance transdermal permeation: In vitro and in vivo characterizations.

J Cosmet Dermatol. 2022-10

[4]
Development, Characterization and Stability Evaluation of Topical Gel Loaded With Ethosomes Containing L. Extract.

Front Pharmacol. 2021-4-12

[5]
Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery.

Pharmaceutics. 2020-9-9

[6]
Influence of formulation variables on miconazole nitrate-loaded lipid based nanocarrier for topical delivery.

Colloids Surf B Biointerfaces. 2020-9

[7]
Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris.

AAPS PharmSciTech. 2020-1-8

[8]
Formulation and Characterization of Nanosized Ethosomal Formulations of Antigout Model Drug (Febuxostat) Prepared by Cold Method: In Vitro/Ex Vivo and In Vivo Assessment.

AAPS PharmSciTech. 2019-12-19

[9]
Core-Shell Nanoencapsulation of α-Tocopherol by Blending Sodium Oleate and Rebaudioside A: Preparation, Characterization, and Antioxidant Activity.

Molecules. 2018-12-3

[10]
Transethosomes of Econazole Nitrate for Transdermal Delivery: Development, In-vitro Characterization, and Ex-vivo Assessment.

Pharm Nanotechnol. 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索