文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MiTree:一个统一的基于树状方法的网络云分析平台,用于实现用户友好且可解释的微生物组数据挖掘。

MiTree: A Unified Web Cloud Analytic Platform for User-Friendly and Interpretable Microbiome Data Mining Using Tree-Based Methods.

作者信息

Kim Jihun, Koh Hyunwook

机构信息

Department of Applied Mathematics and Statistics, The State University of New York, Korea (SUNY Korea), Incheon 21985, Republic of Korea.

出版信息

Microorganisms. 2023 Nov 20;11(11):2816. doi: 10.3390/microorganisms11112816.


DOI:10.3390/microorganisms11112816
PMID:38004827
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10672986/
Abstract

The advent of next-generation sequencing has greatly accelerated the field of human microbiome studies. Currently, investigators are seeking, struggling and competing to find new ways to diagnose, treat and prevent human diseases through the human microbiome. Machine learning is a promising approach to help such an effort, especially due to the high complexity of microbiome data. However, many of the current machine learning algorithms are in a "black box", i.e., they are difficult to understand and interpret. In addition, clinicians, public health practitioners and biologists are not usually skilled at computer programming, and they do not always have high-end computing devices. Thus, in this study, we introduce a unified web cloud analytic platform, named MiTree, for user-friendly and interpretable microbiome data mining. MiTree employs tree-based learning methods, including decision tree, random forest and gradient boosting, that are well understood and suited to human microbiome studies. We also stress that MiTree can address both classification and regression problems through covariate-adjusted or unadjusted analysis. MiTree should serve as an easy-to-use and interpretable data mining tool for microbiome-based disease prediction modeling, and should provide new insights into microbiome-based diagnostics, treatment and prevention. MiTree is an open-source software that is available on our web server.

摘要

下一代测序技术的出现极大地加速了人类微生物组研究领域的发展。目前,研究人员正在寻找、努力并竞争通过人类微生物组来发现诊断、治疗和预防人类疾病的新方法。机器学习是帮助实现这一目标的一种有前景的方法,特别是由于微生物组数据的高度复杂性。然而,当前许多机器学习算法处于“黑箱”状态,即它们难以理解和解释。此外,临床医生、公共卫生从业者和生物学家通常不擅长计算机编程,并且他们并不总是拥有高端计算设备。因此,在本研究中,我们引入了一个名为MiTree的统一网络云分析平台,用于用户友好且可解释的微生物组数据挖掘。MiTree采用基于树的学习方法,包括决策树、随机森林和梯度提升,这些方法易于理解且适用于人类微生物组研究。我们还强调,MiTree可以通过协变量调整或未调整分析来解决分类和回归问题。MiTree应作为一种易于使用且可解释的数据挖掘工具,用于基于微生物组的疾病预测建模,并应为基于微生物组的诊断、治疗和预防提供新的见解。MiTree是一款开源软件,可在我们的网络服务器上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/f5f27f1d6b70/microorganisms-11-02816-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/87816f49529f/microorganisms-11-02816-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/b4c0e95e4caa/microorganisms-11-02816-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/3ab3c04bf4f7/microorganisms-11-02816-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/25e86ac79678/microorganisms-11-02816-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/f5f27f1d6b70/microorganisms-11-02816-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/87816f49529f/microorganisms-11-02816-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/b4c0e95e4caa/microorganisms-11-02816-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/3ab3c04bf4f7/microorganisms-11-02816-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/25e86ac79678/microorganisms-11-02816-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84f/10672986/f5f27f1d6b70/microorganisms-11-02816-g005.jpg

相似文献

[1]
MiTree: A Unified Web Cloud Analytic Platform for User-Friendly and Interpretable Microbiome Data Mining Using Tree-Based Methods.

Microorganisms. 2023-11-20

[2]
MiMultiCat: A Unified Cloud Platform for the Analysis of Microbiome Data with Multi-Categorical Responses.

Bioengineering (Basel). 2024-1-8

[3]
Comprehensive microbiome causal mediation analysis using MiMed on user-friendly web interfaces.

Biol Methods Protoc. 2023-10-4

[4]
A unified web cloud computing platform MiMedSurv for microbiome causal mediation analysis with survival responses.

Sci Rep. 2024-9-4

[5]
MiSurv: an Integrative Web Cloud Platform for User-Friendly Microbiome Data Analysis with Survival Responses.

Microbiol Spectr. 2023-6-15

[6]
Integrative web cloud computing and analytics using MiPair for design-based comparative analysis with paired microbiome data.

Sci Rep. 2022-11-28

[7]
MiCloud: A unified web platform for comprehensive microbiome data analysis.

PLoS One. 2022

[8]
MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics.

mSystems. 2022-10-26

[9]
Interpretable machine learning models for hospital readmission prediction: a two-step extracted regression tree approach.

BMC Med Inform Decis Mak. 2023-6-5

[10]
EzMAP: Easy Microbiome Analysis Platform.

BMC Bioinformatics. 2021-4-7

引用本文的文献

[1]
MiCML: a causal machine learning cloud platform for the analysis of treatment effects using microbiome profiles.

BioData Min. 2025-1-30

[2]
A unified web cloud computing platform MiMedSurv for microbiome causal mediation analysis with survival responses.

Sci Rep. 2024-9-4

[3]
MiMultiCat: A Unified Cloud Platform for the Analysis of Microbiome Data with Multi-Categorical Responses.

Bioengineering (Basel). 2024-1-8

本文引用的文献

[1]
Machine learning and deep learning applications in microbiome research.

ISME Commun. 2022-10-6

[2]
Comprehensive microbiome causal mediation analysis using MiMed on user-friendly web interfaces.

Biol Methods Protoc. 2023-10-4

[3]
MiSurv: an Integrative Web Cloud Platform for User-Friendly Microbiome Data Analysis with Survival Responses.

Microbiol Spectr. 2023-6-15

[4]
The mediating roles of the oral microbiome in saliva and subgingival sites between e-cigarette smoking and gingival inflammation.

BMC Microbiol. 2023-2-2

[5]
Integrative web cloud computing and analytics using MiPair for design-based comparative analysis with paired microbiome data.

Sci Rep. 2022-11-28

[6]
Faecal microbiome-based machine learning for multi-class disease diagnosis.

Nat Commun. 2022-11-10

[7]
Microbiome epidemiology and association studies in human health.

Nat Rev Genet. 2023-2

[8]
MiCloud: A unified web platform for comprehensive microbiome data analysis.

PLoS One. 2022

[9]
Microbiota in health and diseases.

Signal Transduct Target Ther. 2022-4-23

[10]
Microbiome-based disease prediction with multimodal variational information bottlenecks.

PLoS Comput Biol. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索