文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络药理学的β-胡萝卜素抗炎机制研究。

Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology.

机构信息

Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China.

College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.

出版信息

Molecules. 2023 Nov 11;28(22):7540. doi: 10.3390/molecules28227540.


DOI:10.3390/molecules28227540
PMID:38005265
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10673508/
Abstract

β-carotene is known to have pharmacological effects such as anti-inflammatory, antioxidant, and anti-tumor properties. However, its main mechanism and related signaling pathways in the treatment of inflammation are still unclear. In this study, component target prediction was performed by using literature retrieval and the SwissTargetPrediction database. Disease targets were collected from various databases, including DisGeNET, OMIM, Drug Bank, and GeneCards. A protein-protein interaction (PPI) network was constructed, and enrichment analysis of gene ontology and biological pathways was carried out for important targets. The analysis showed that there were 191 unique targets of β-carotene after removing repeat sites. A total of 2067 targets from the three databases were integrated, 58 duplicate targets were removed, and 2009 potential disease action targets were obtained. Biological function enrichment analysis revealed 284 biological process (BP) entries, 31 cellular component (CC) entries, 55 molecular function (MF) entries, and 84 cellular pathways. The biological processes were mostly associated with various pathways and their regulation, whereas the cell components were mainly membrane components. The main molecular functions included RNA polymerase II transcription factor activity, DNA binding specific to the ligand activation sequence, DNA binding, steroid binding sequence-specific DNA binding, enzyme binding, and steroid hormone receptors. The pathways involved in the process included the TNF signaling pathway, sphingomyelin signaling pathway, and some disease pathways. Lastly, the anti-inflammatory signaling pathway of β-carotene was systematically analyzed using network pharmacology, while the molecular mechanism of β-carotene was further explored by molecular docking. In this study, the anti-inflammatory mechanism of β-carotene was preliminarily explored and predicted by bioinformatics methods, and further experiments will be designed to verify and confirm the predicted results, in order to finally reveal the anti-inflammatory mechanism of β-carotene.

摘要

β-胡萝卜素有抗炎、抗氧化、抗肿瘤等药理作用。然而,其在炎症治疗中的主要机制及相关信号通路尚不清楚。本研究采用文献检索和 SwissTargetPrediction 数据库进行成分靶点预测,从 DisGeNET、OMIM、Drug Bank 和 GeneCards 等数据库中收集疾病靶点,构建蛋白互作(PPI)网络,并对重要靶点进行基因本体论和生物通路富集分析。分析表明,β-胡萝卜素经去重后有 191 个独特靶点。整合三个数据库共 2067 个靶点,去除 58 个重复靶点,得到 2009 个潜在疾病作用靶点。生物功能富集分析显示,β-胡萝卜素共有 284 个生物学过程(BP)条目、31 个细胞成分(CC)条目、55 个分子功能(MF)条目和 84 个细胞通路条目。生物学过程主要与各种通路及其调控有关,而细胞成分主要是膜成分。主要的分子功能包括 RNA 聚合酶 II 转录因子活性、配体激活序列特异性 DNA 结合、DNA 结合、固醇结合序列特异性 DNA 结合、酶结合和类固醇激素受体。涉及的通路包括 TNF 信号通路、鞘磷脂信号通路和一些疾病通路。最后,采用网络药理学方法系统分析了 β-胡萝卜素的抗炎信号通路,并用分子对接进一步探讨了 β-胡萝卜素的分子机制。本研究通过生物信息学方法初步探讨和预测了β-胡萝卜素的抗炎机制,进一步设计实验将对预测结果进行验证和确认,以期最终揭示β-胡萝卜素的抗炎机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/c0429c6e3f72/molecules-28-07540-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/dccf18c10828/molecules-28-07540-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/25d22841a19f/molecules-28-07540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/e3837ffddd05/molecules-28-07540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/c2bd5f5aa9bd/molecules-28-07540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/b5fb0dd2b8a8/molecules-28-07540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/6e7bd7bee7e0/molecules-28-07540-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/3e94d0e2935d/molecules-28-07540-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/067ffa6bb7ae/molecules-28-07540-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/c0429c6e3f72/molecules-28-07540-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/dccf18c10828/molecules-28-07540-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/25d22841a19f/molecules-28-07540-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/e3837ffddd05/molecules-28-07540-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/c2bd5f5aa9bd/molecules-28-07540-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/b5fb0dd2b8a8/molecules-28-07540-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/6e7bd7bee7e0/molecules-28-07540-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/3e94d0e2935d/molecules-28-07540-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/067ffa6bb7ae/molecules-28-07540-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/10673508/c0429c6e3f72/molecules-28-07540-g009.jpg

相似文献

[1]
Study of the Anti-Inflammatory Mechanism of β-Carotene Based on Network Pharmacology.

Molecules. 2023-11-11

[2]
[Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment].

Zhongguo Zhong Yao Za Zhi. 2023-6

[3]
Exploring the Anti-Inflammatory Mechanism of Tieguanyin (TGY) Volatile Compounds Based on Gas Chromatography-Mass Spectrometry (GCMS)- Network Pharmacology.

Comb Chem High Throughput Screen. 2022

[4]
[Mechanism of Carthami Flos and Lepidii Semen drug pair in inhibition of myocardial fibrosis by improving cardiac microenvironment based on network pharmacology and animal experiment].

Zhongguo Zhong Yao Za Zhi. 2022-2

[5]
Mechanism of decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking.

Front Pharmacol. 2022-10-28

[6]
Integration of Network Pharmacology and Molecular Docking Technology Reveals the Mechanism of the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease.

Comb Chem High Throughput Screen. 2022

[7]
Evaluation of the Mechanism of Action of Rosemary Volatile Oil in the Treatment of Alzheimer's Disease Using Gas Chromatography -mass Spectrometry Analysis and Network Pharmacology.

Comb Chem High Throughput Screen. 2023

[8]
Study on Anti-inflammatory Mechanism of Blueberry based on Network Pharmacology and Molecular Docking Technology.

Comb Chem High Throughput Screen. 2023

[9]
[Mechanism of modified Liangge San in treatment of acute respiratory distress syndrome based on network pharmacology and experimental validation].

Zhongguo Zhong Yao Za Zhi. 2022-12

[10]
[Mechanism of Zixin Biqiu Granules in treatment of allergic rhinitis based on network pharmacology and molecular docking technology].

Zhongguo Zhong Yao Za Zhi. 2022-10

引用本文的文献

[1]
Optimal Vegetable Intake for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) Prevention: Insights from a South Italian Cohort.

Nutrients. 2025-7-29

[2]
Nutrients and Bioactive Compounds from Seeds: A Review Focused on Omics-Based Investigations.

Int J Mol Sci. 2025-5-29

[3]
Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications.

Int J Mol Sci. 2025-5-14

[4]
SAS1: new probiotic candidate for obesity and allergy treatment their mechanistic insights and cytotoxicity evaluation.

Front Microbiol. 2025-4-30

[5]
Effects of Spirulina Supplementation on C-Reactive Protein (CRP): A Systematic Review and Dose-Response Meta-Analysis.

Food Sci Nutr. 2025-5-5

[6]
Protective effect of serum carotenoids on mortality among metabolic syndrome patients: attenuated by lipid-lowering drugs.

Nutr J. 2025-2-19

[7]
Uncovering anti-inflammatory potential of Linn: Network pharmacology and in vitro studies.

Narra J. 2024-8

本文引用的文献

[1]
Network pharmacology based virtual screening of Flavonoids from and the molecular mechanism against inflammation.

Saudi Pharm J. 2023-11

[2]
Molecular consideration relevant to the mechanism of the comorbidity between psoriasis and systemic lupus erythematosus (Review).

Exp Ther Med. 2023-8-29

[3]
Leptin plays a role in the multiplication of and inflammation in ovarian granulosa cells in polycystic ovary syndrome through the JAK1/STAT3 pathway.

Clinics (Sao Paulo). 2023

[4]
Vitamin A regulates dermal papilla cell proliferation and apoptosis under heat stress via IGF1 and Wnt10b signaling.

Ecotoxicol Environ Saf. 2023-8-8

[5]
S1PR1-dependent migration of ILC3s from intestinal tissue to the heart in a mouse model of viral myocarditis.

J Leukoc Biol. 2023-7-27

[6]
Targeting immunoregulation for cardiac regeneration.

J Mol Cell Cardiol. 2023-4

[7]
Dimethyl fumarate attenuates paraquat-induced pulmonary oxidative stress, inflammation and fibrosis in mice.

Pestic Biochem Physiol. 2023-2

[8]
dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer's disease process.

Aging (Albany NY). 2022-11-1

[9]
Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis.

Molecules. 2022-10-21

[10]
Therapeutic Effects of Retinoic Acid in Lipopolysaccharide-Induced Cardiac Dysfunction: Network Pharmacology and Experimental Validation.

J Inflamm Res. 2022-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索