Suppr超能文献

作物和果树应对胁迫的分子基础。

Molecular Basis of Crops and Fruit Plants in Response to Stress.

作者信息

Costa Jose Helio, Miranda Rafael de Souza

机构信息

Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60451-970, Ceara, Brazil.

Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP) (Coordinated from Foros de Vale de Figueira), 7050-704 Alentejo, Portugal.

出版信息

Plants (Basel). 2023 Nov 9;12(22):3813. doi: 10.3390/plants12223813.

Abstract

This editorial summarizes the main scientific contributions from 11 papers comprising the Special Issue (SI) "Molecular Basis of Crops and Fruit Plants in Response to Stress". Here, we collected papers from different research groups encompassing molecular studies from monocots (ginger, rice, maize) and eudicots (common hazel, cowpea, pepper, soybean, tomato) species submitted to abiotic stresses as heat, cold, salt, drought, and heavy metals or biotic stresses induced by different viruses, such as , , , and . These studies explored different aspects of molecular mechanisms involved in plant stress tolerance, establishing comparative analyses among genotypes/cultivars to identify potential molecular markers of stresses that are now available for future application in biotechnological studies. This SI presents a collection of advanced concepts and emerging strategies for readers and researchers aiming to accelerate plant breeding.

摘要

这篇社论总结了构成特刊(SI)“作物和果树植物应对胁迫的分子基础”的11篇论文的主要科学贡献。在此,我们收集了不同研究小组的论文,这些论文涵盖了单子叶植物(姜、水稻、玉米)和双子叶植物(欧洲榛、豇豆、辣椒、大豆、番茄)在遭受热、冷、盐、干旱和重金属等非生物胁迫或由不同病毒如[此处缺失病毒名称]、[此处缺失病毒名称]、[此处缺失病毒名称]和[此处缺失病毒名称]诱导的生物胁迫时的分子研究。这些研究探索了植物胁迫耐受性所涉及分子机制的不同方面,在基因型/品种之间进行比较分析,以识别胁迫的潜在分子标记,这些标记现在可用于未来的生物技术研究。本特刊为旨在加速植物育种的读者和研究人员提供了一系列先进概念和新兴策略。

相似文献

1
Molecular Basis of Crops and Fruit Plants in Response to Stress.
Plants (Basel). 2023 Nov 9;12(22):3813. doi: 10.3390/plants12223813.
2
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
3
The role of melatonin in tomato stress response, growth and development.
Plant Cell Rep. 2022 Aug;41(8):1631-1650. doi: 10.1007/s00299-022-02876-9. Epub 2022 May 16.
4
Stress tolerance in plants via habitat-adapted symbiosis.
ISME J. 2008 Apr;2(4):404-16. doi: 10.1038/ismej.2007.106. Epub 2008 Feb 7.
5
Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress.
Planta. 2018 Dec;248(6):1487-1503. doi: 10.1007/s00425-018-2987-6. Epub 2018 Aug 21.
7
Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
Ecotoxicol Environ Saf. 2018 Jan;147:881-896. doi: 10.1016/j.ecoenv.2017.09.063. Epub 2017 Sep 28.
8
Root-Related Genes in Crops and Their Application under Drought Stress Resistance-A Review.
Int J Mol Sci. 2022 Sep 29;23(19):11477. doi: 10.3390/ijms231911477.
9
Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.
Mol Genet Genomics. 2015 Feb;290(1):79-95. doi: 10.1007/s00438-014-0898-1. Epub 2014 Aug 23.

引用本文的文献

本文引用的文献

4
Analysis of the Tomato Gene Family and Study of the Stress Resistance Function of .
Plants (Basel). 2023 Aug 3;12(15):2862. doi: 10.3390/plants12152862.
5
Research Progress on the Mechanism of Salt Tolerance in Maize: A Classic Field That Needs New Efforts.
Plants (Basel). 2023 Jun 18;12(12):2356. doi: 10.3390/plants12122356.
8
Gene in Maize ( L.): Genome-Wide Identification, Characterization, Expression, and Stress Response.
Plants (Basel). 2022 Nov 11;11(22):3060. doi: 10.3390/plants11223060.
9
The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels.
Plants (Basel). 2022 Nov 11;11(22):3051. doi: 10.3390/plants11223051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验