Suppr超能文献

对选定基因集的转录组分析表明,交替氧化酶(AOX)和早期增强型发酵对水稻耐盐性至关重要。

Transcriptome Analyses in a Selected Gene Set Indicate Alternative Oxidase (AOX) and Early Enhanced Fermentation as Critical for Salinity Tolerance in Rice.

作者信息

Aziz Shahid, Germano Thais Andrade, Thiers Karine Leitão Lima, Batista Mathias Coelho, de Souza Miranda Rafael, Arnholdt-Schmitt Birgit, Costa Jose Helio

机构信息

Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60451-970, Ceara, Brazil.

Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP) (Coordinated from Foros de Vale de Figueira), 7050-704 Alentejo, Portugal.

出版信息

Plants (Basel). 2022 Aug 18;11(16):2145. doi: 10.3390/plants11162145.

Abstract

Plants subjected to stress need to respond rapidly and efficiently to acclimatize and survive. In this paper, we investigated a selected gene set potentially involved in early cell reprogramming in two rice genotypes with contrasting salinity tolerance (Pokkali tolerant and IR29 susceptible) in order to advance knowledge of early molecular mechanisms of rice in dealing with salt stress. Selected genes were evaluated in available transcriptomic data over a short period of 24 h and involved enzymes that avoid ROS formation (AOX, UCP and PTOX), impact ATP production (PFK, ADH and COX) or relate to the antioxidant system. Higher transcript accumulation of AOX (ROS balancing), PFK and ADH (alcohol fermentation) was detected in the tolerant genotype, while the sensitive genotype revealed higher UCP and PTOX transcript levels, indicating a predominant role for early transcription of AOX and fermentation in conferring salt stress tolerance to rice. Antioxidant gene analyses supported higher oxidative stress in IR29, with transcript increases of cytosolic CAT and SOD from all cell compartments (cytoplasm, peroxisome, chloroplast and mitochondria). In contrast, Pokkali increased mRNA levels from the AsA-GSH cycle as cytosolic/mitochondrial DHAR was involved in ascorbate recovery. In addition, these responses occurred from 2 h in IR29 and 10 h in Pokkali, indicating early but ineffective antioxidant activity in the susceptible genotype. Overall, our data suggest that AOX and ADH can play a critical role during early cell reprogramming for improving salt stress tolerance by efficiently controlling ROS formation in mitochondria. We discuss our results in relation to gene engineering and editing approaches to develop salinity-tolerant crops.

摘要

遭受胁迫的植物需要迅速而有效地做出反应以适应环境并存活下来。在本文中,我们研究了一组可能参与两种耐盐性不同的水稻基因型(耐盐的Pokkali和盐敏感的IR29)早期细胞重编程的基因,以增进对水稻应对盐胁迫早期分子机制的了解。在24小时的短时间内,利用现有的转录组数据对选定的基因进行了评估,这些基因涉及避免活性氧形成的酶(交替氧化酶、解偶联蛋白和质体醌氧化还原酶)、影响ATP产生的酶(磷酸果糖激酶、乙醇脱氢酶和细胞色素c氧化酶)或与抗氧化系统相关的酶。在耐盐基因型中检测到交替氧化酶(平衡活性氧)、磷酸果糖激酶和乙醇脱氢酶(酒精发酵)的转录积累更高,而敏感基因型则显示解偶联蛋白和质体醌氧化还原酶的转录水平更高,这表明交替氧化酶的早期转录和发酵在赋予水稻盐胁迫耐受性方面起主要作用。抗氧化基因分析支持IR29中存在更高的氧化应激,所有细胞区室(细胞质、过氧化物酶体、叶绿体和线粒体)的胞质过氧化氢酶和超氧化物歧化酶的转录本均增加。相比之下,Pokkali中抗坏血酸-谷胱甘肽循环的mRNA水平升高,因为胞质/线粒体脱氢抗坏血酸还原酶参与了抗坏血酸的恢复。此外,这些反应在IR29中从2小时开始出现,在Pokkali中从10小时开始出现,表明敏感基因型中存在早期但无效的抗氧化活性。总体而言,我们的数据表明,交替氧化酶和乙醇脱氢酶在早期细胞重编程过程中通过有效控制线粒体中的活性氧形成,在提高盐胁迫耐受性方面可能发挥关键作用。我们结合基因工程和编辑方法来培育耐盐作物,讨论了我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4d6/9415304/6911f13ee864/plants-11-02145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验