文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有高导热性的功能化沸石/交联聚乙烯复合材料的制备及空间电荷特性

Preparation and Space Charge Properties of Functionalized Zeolite/Crosslinked Polyethylene Composites with High Thermal Conductivity.

作者信息

Han Bai, Dai Jinghui, Zhao Wanliang, Song Wei, Sun Zhi, Wang Xuan

机构信息

Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China.

College of Electrical and Electronic Engineer, Harbin University of Science and Technology, Harbin 150080, China.

出版信息

Polymers (Basel). 2023 Nov 9;15(22):4363. doi: 10.3390/polym15224363.


DOI:10.3390/polym15224363
PMID:38006087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10674397/
Abstract

Nanocomposite doping is an effective method to improve the dielectric properties of polyethylene. Meanwhile, the introduction of thermal conductivity groups in crosslinked polyethylene (XLPE) is also an effective way to improve the thermal conductivity. Nano-zeolite is an inorganic material with a porous structure that can be doped into polyethylene to improve the insulation performance. In this paper, hyperbranched polyarylamide (HBP) with a high thermal conductivity and an auxiliary crosslinking agent (TAIC) was grafted on the surface of ZSM-5 nano-zeolite successively to obtain functionalized nano-zeolite (TAICS-ZSM-5-HBP) (the "S" in TAICS means plural). The prepared functionalized nano-zeolite was doped in polyethylene and grafted under a thermal crosslinking reaction to prepare nanocomposites (XLPE/TAICS-ZSM-5-HBP). The structural characterization showed that the nanocomposite was successfully prepared and that the nanoparticles were uniformly dispersed in the polyethylene matrix. The space charge of the TAICS-ZSM-5-HBP 5wt% nanocomposite under a high electric field was obviously inhibited. The space charge short-circuit test showed that the porous structure of the nano-zeolite introduced more deep traps, which made the trapped charge difficult to break off, hindering the charge injection. The introduction of TAICS-ZSM-5-HBP particles can greatly improve the thermal conductivity of nanocomposites. The thermal conductivity of the XLPE/5wt% and XLPE/7wt% TAICS-ZSM-5-HBP nanocomposites increased by 42.21% and 69.59% compared to that of XLPE at 20 °C, and by 34.27% and 62.83% at 80 °C.

摘要

纳米复合掺杂是提高聚乙烯介电性能的有效方法。同时,在交联聚乙烯(XLPE)中引入导热基团也是提高热导率的有效途径。纳米沸石是一种具有多孔结构的无机材料,可掺杂到聚乙烯中以提高绝缘性能。本文将具有高导热性的超支化聚芳酰胺(HBP)和辅助交联剂(TAIC)依次接枝到ZSM-5纳米沸石表面,得到功能化纳米沸石(TAICS-ZSM-5-HBP)(TAICS中的“S”表示复数)。将制备的功能化纳米沸石掺杂到聚乙烯中,并在热交联反应下进行接枝,制备纳米复合材料(XLPE/TAICS-ZSM-5-HBP)。结构表征表明,成功制备了纳米复合材料,且纳米粒子均匀分散在聚乙烯基体中。TAICS-ZSM-5-HBP 5wt%纳米复合材料在高电场下的空间电荷明显受到抑制。空间电荷短路测试表明,纳米沸石的多孔结构引入了更多的深陷阱,使捕获的电荷难以脱离,阻碍了电荷注入。TAICS-ZSM-5-HBP颗粒的引入可大大提高纳米复合材料的热导率。XLPE/5wt%和XLPE/7wt% TAICS-ZSM-5-HBP纳米复合材料在20℃时的热导率相比XLPE分别提高了42.21%和69.59%,在80℃时分别提高了34.27%和62.83%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/d752ace56182/polymers-15-04363-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/4a91b2cfe9a2/polymers-15-04363-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/a41d796b84ee/polymers-15-04363-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/fad2a760c93f/polymers-15-04363-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/5d0dc20d9c64/polymers-15-04363-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/dfbac890fcad/polymers-15-04363-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/234e3251d90d/polymers-15-04363-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/8b43c674673d/polymers-15-04363-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/7f5f4a92623d/polymers-15-04363-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/543ca42d718b/polymers-15-04363-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/d752ace56182/polymers-15-04363-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/4a91b2cfe9a2/polymers-15-04363-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/a41d796b84ee/polymers-15-04363-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/fad2a760c93f/polymers-15-04363-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/5d0dc20d9c64/polymers-15-04363-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/dfbac890fcad/polymers-15-04363-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/234e3251d90d/polymers-15-04363-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/8b43c674673d/polymers-15-04363-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/7f5f4a92623d/polymers-15-04363-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/543ca42d718b/polymers-15-04363-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b8/10674397/d752ace56182/polymers-15-04363-g010.jpg

相似文献

[1]
Preparation and Space Charge Properties of Functionalized Zeolite/Crosslinked Polyethylene Composites with High Thermal Conductivity.

Polymers (Basel). 2023-11-9

[2]
Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE.

Molecules. 2020-8-20

[3]
Effect of Nanoporous Molecular Sieves TS-1 on Electrical Properties of Crosslinked Polyethylene Nanocomposites.

Nanomaterials (Basel). 2024-6-6

[4]
Study on the Structure and Dielectric Properties of Zeolite/LDPE Nanocomposite under Thermal Aging.

Polymers (Basel). 2020-9-16

[5]
Improved DC Dielectric Performance of Photon-Initiated Crosslinking Polyethylene with TMPTMA Auxiliary Agent.

Materials (Basel). 2019-10-29

[6]
Evaluation of graphene/crosslinked polyethylene for potential high voltage direct current cable insulation applications.

Sci Rep. 2021-9-13

[7]
Investigation of the Space Charge and DC Breakdown Behavior of XLPE/α-AlO Nanocomposites.

Materials (Basel). 2020-3-15

[8]
Cyanate ester composites containing surface functionalized BN particles with grafted hyperpolyarylamide exhibiting desirable thermal conductivities and a low dielectric constant.

RSC Adv. 2019-11-8

[9]
Dielectric, Mechanical, and Thermal Properties of Crosslinked Polyethylene Nanocomposite with Hybrid Nanofillers.

Polymers (Basel). 2023-3-29

[10]
The Impact of Cross-Linking Effect on the Space Charge Characteristics of Cross-Linked Polyethylene with Different Degrees of Cross-Linking under Strong Direct Current Electric Field.

Polymers (Basel). 2019-7-4

本文引用的文献

[1]
Improving the DC Dielectric Properties of XLPE with Appropriate Content of Dicumyl Peroxide for HVDC Cables Insulation.

Materials (Basel). 2022-8-25

[2]
Water-Tree Resistant Characteristics of Crosslinker-Modified-SiO/XLPE Nanocomposites.

Materials (Basel). 2021-3-13

[3]
Highly Thermoconductive, Thermostable, and Super-Flexible Film by Engineering 1D Rigid Rod-Like Aramid Nanofiber/2D Boron Nitride Nanosheets.

Adv Mater. 2020-2

[4]
Preparation Methods of Polypropylene/Nano-Silica/Styrene-Ethylene-Butylene-Styrene Composite and Its Effect on Electrical Properties.

Polymers (Basel). 2019-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索