Shi Lirui, Zhang Chong, Xing Zhaoliang, Kang Yuanyi, Han Weihua, Xin Meng, Hao Chuncheng
State Key Laboratory of Advanced Power Transmission Technology, Beijing 102209, China.
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
Nanomaterials (Basel). 2024 Jun 6;14(11):985. doi: 10.3390/nano14110985.
Crosslinked polyethylene (XLPE) is an important polyethylene modification material which is widely used in high-voltage direct current (HVDC) transmission systems. Low-density polyethylene (LDPE) was used as a matrix to improve the thermal and electrical properties of XLPE composites through the synergistic effect of a crosslinking agent and nanopore structure molecular sieve, TS-1. It was found that the electrical and thermal properties of the matrices were different due to the crosslinking degree and crosslinking efficiency, and the introduction of TS-1 enhanced the dielectric constants of the two matrices to 2.53 and 2.54, and the direct current (DC) resistivities were increased to 3 × 10 and 4 × 10 Ω·m, with the enhancement of the thermal conductivity at different temperatures. As the applied voltage increases, the DC breakdown field strength is enhanced from 318 to 363 kV/mm and 330 to 356 kV/mm. The unique nanopore structure of TS-1 itself can inhibit the injection and accumulation in the internal space of crosslinked polyethylene composites, and the pore size effect of the filler can limit the development of electron impact ionization, inhibit the electron avalanche breakdown, and improve the strength of the external applied electric field (breakdown field) that TS-1/XLPE nanocomposites can withstand. This provides a new method for the preparation of nanocomposite insulating dielectric materials for HVDC transmission systems with better performance.
交联聚乙烯(XLPE)是一种重要的聚乙烯改性材料,广泛应用于高压直流(HVDC)输电系统。以低密度聚乙烯(LDPE)为基体,通过交联剂与纳米孔结构分子筛TS-1的协同作用来改善XLPE复合材料的热性能和电性能。研究发现,由于交联度和交联效率的不同,基体的电性能和热性能存在差异,TS-1的引入使两种基体的介电常数分别提高到2.53和2.54,直流(DC)电阻率分别提高到3×10和4×10Ω·m,且在不同温度下热导率均有所提高。随着施加电压的增加,直流击穿场强从318提高到363 kV/mm以及从330提高到356 kV/mm。TS-1本身独特的纳米孔结构能够抑制交联聚乙烯复合材料内部空间中的电荷注入和积累,填料的孔径效应可以限制电子碰撞电离的发展,抑制电子雪崩击穿,并提高TS-1/XLPE纳米复合材料能够承受的外部施加电场(击穿场)强度。这为制备性能更优的用于HVDC输电系统的纳米复合绝缘介电材料提供了一种新方法。
Nanomaterials (Basel). 2024-6-6
Materials (Basel). 2020-3-15
Materials (Basel). 2020-10-23
Polymers (Basel). 2016-4-28
Nanomaterials (Basel). 2024-10-3
J Stomatol Oral Maxillofac Surg. 2023-12
Polymers (Basel). 2020-9-17
Polymers (Basel). 2018-12-24
Materials (Basel). 2010-7-13