Sharma Renu, Yang Wei-Chang David
Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
Microscopy (Oxf). 2024 Apr 8;73(2):79-100. doi: 10.1093/jmicro/dfad057.
In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure-chemistry-property relationship over the past couple of decades. The challenges for realizing 'a lab-in-gap', i.e. gap between the objective lens pole pieces, or 'a lab-on-chip', to be used to carry out experiments are being met through continuous instrumental developments. Commercially available TEM columns and sample holder, that have been modified for in situ experimentation, have contributed to uncover structural and chemical changes occurring in the sample when subjected to external stimulus such as temperature, pressure, radiation (photon, ions and electrons), environment (gas, liquid and magnetic or electrical field) or a combination thereof. Whereas atomic resolution images and spectroscopy data are being collected routinely using TEM/STEM, temporal resolution is limited to millisecond. On the other hand, better than femtosecond temporal resolution can be achieved using an ultrafast electron microscopy or dynamic TEM, but the spatial resolution is limited to sub-nanometers. In either case, in situ experiments generate large datasets that need to be transferred, stored and analyzed. The advent of artificial intelligence, especially machine learning platforms, is proving crucial to deal with this big data problem. Further developments are still needed in order to fully exploit our capability to understand, measure and control chemical and/or physical processes. We present the current state of instrumental and computational capabilities and discuss future possibilities.
在过去几十年里,原位透射/扫描透射电子显微镜(TEM/STEM)测量在建立结构-化学-性质关系方面占据了核心地位。通过持续的仪器开发,正在应对实现“间隙实验室”(即物镜极靴之间的间隙)或“芯片实验室”以用于进行实验所面临的挑战。经过改进以用于原位实验的市售TEM柱和样品架,有助于揭示样品在受到诸如温度、压力、辐射(光子、离子和电子)、环境(气体、液体以及磁场或电场)或它们的组合等外部刺激时发生的结构和化学变化。虽然使用TEM/STEM可以常规收集原子分辨率图像和光谱数据,但时间分辨率仅限于毫秒级。另一方面,使用超快电子显微镜或动态TEM可以实现优于飞秒的时间分辨率,但空间分辨率仅限于亚纳米级。在任何一种情况下,原位实验都会生成需要传输、存储和分析的大量数据集。人工智能的出现,尤其是机器学习平台,对于处理这个大数据问题至关重要。为了充分利用我们理解、测量和控制化学和/或物理过程的能力,仍需要进一步发展。我们展示了仪器和计算能力的当前状态,并讨论了未来的可能性。