Faculty of Medicine, University of Montreal, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
Comput Med Imaging Graph. 2023 Dec;110:102315. doi: 10.1016/j.compmedimag.2023.102315. Epub 2023 Nov 23.
Low-dose and fast PET imaging (low-count PET) play a significant role in enhancing patient safety, healthcare efficiency, and patient comfort during medical imaging procedures. To achieve high-quality images with low-count PET scans, effective reconstruction models are crucial for denoising and enhancing image quality. The main goal of this paper is to develop an effective and accurate deep learning-based method for reconstructing low-count PET images, which is a challenging problem due to the limited amount of available data and the high level of noise in the acquired images. The proposed method aims to improve the quality of reconstructed PET images while preserving important features, such as edges and small details, by combining the strengths of UNET and Transformer networks.
The proposed TrUNET-MAPEM model integrates a residual UNET-transformer regularizer into the unrolled maximum a posteriori expectation maximization (MAPEM) algorithm for PET image reconstruction. A loss function based on a combination of structural similarity index (SSIM) and mean squared error (MSE) is utilized to evaluate the accuracy of the reconstructed images. The simulated dataset was generated using the Brainweb phantom, while the real patient dataset was acquired using a Siemens Biograph mMR PET scanner. We also implemented state-of-the-art methods for comparison purposes: OSEM, MAPOSEM, and supervised learning using 3D-UNET network. The reconstructed images are compared to ground truth images using metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and relative root mean square error (rRMSE) to quantitatively evaluate the accuracy of the reconstructed images.
Our proposed TrUNET-MAPEM approach was evaluated using both simulated and real patient data. For the patient data, our model achieved an average PSNR of 33.72 dB, an average SSIM of 0.955, and an average rRMSE of 0.39. These results outperformed other methods which had average PSNRs of 36.89 dB, 34.12 dB, and 33.52 db, average SSIMs of 0.944, 0.947, and 0.951, and average rRMSEs of 0.59, 0.49, and 0.42. For the simulated data, our model achieved an average PSNR of 31.23 dB, an average SSIM of 0.95, and an average rRMSE of 0.55. These results also outperformed other state-of-the-art methods, such as OSEM, MAPOSEM, and 3DUNET-MAPEM. The model demonstrates the potential for clinical use by successfully reconstructing smooth images while preserving edges. The comparison with other methods demonstrates the superiority of our approach, as it outperforms all other methods for all three metrics.
The proposed TrUNET-MAPEM model presents a significant advancement in the field of low-count PET image reconstruction. The results demonstrate the potential for clinical use, as the model can produce images with reduced noise levels and better edge preservation compared to other reconstruction and post-processing algorithms. The proposed approach may have important clinical applications in the early detection and diagnosis of various diseases.
低剂量、快速 PET 成像(低计数 PET)在增强患者安全性、提高医疗效率和改善患者舒适度方面发挥着重要作用。为了在低计数 PET 扫描中获得高质量的图像,有效的重建模型对于去噪和增强图像质量至关重要。本文的主要目标是开发一种有效的基于深度学习的方法,用于重建低计数 PET 图像,这是一个具有挑战性的问题,因为可用数据量有限,并且获取的图像中的噪声水平很高。该方法旨在通过结合 UNET 和 Transformer 网络的优势,提高重建 PET 图像的质量,同时保留边缘和小细节等重要特征。
所提出的 TrUNET-MAPEM 模型将残差 UNET-Transformer 正则化器集成到展开的最大后验期望最大化 (MAPEM) 算法中,用于 PET 图像重建。使用基于结构相似性指数 (SSIM) 和均方误差 (MSE) 组合的损失函数来评估重建图像的准确性。模拟数据集是使用 Brainweb 体模生成的,而真实患者数据集是使用西门子 Biograph mMR PET 扫描仪采集的。我们还实现了最先进的方法进行比较:OSEM、MAPOSEM 和使用 3D-UNET 网络的监督学习。使用峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和相对均方根误差 (rRMSE) 等指标将重建图像与地面真实图像进行比较,以定量评估重建图像的准确性。
我们的方法使用模拟和真实患者数据进行了评估。对于患者数据,我们的模型在 PSNR 平均值为 33.72dB、SSIM 平均值为 0.955 和 rRMSE 平均值为 0.39 方面取得了较好的效果。这些结果优于其他方法,其他方法的 PSNR 平均值为 36.89dB、34.12dB 和 33.52dB,SSIM 平均值为 0.944、0.947 和 0.951,rRMSE 平均值为 0.59、0.49 和 0.42。对于模拟数据,我们的模型在 PSNR 平均值为 31.23dB、SSIM 平均值为 0.95 和 rRMSE 平均值为 0.55 方面取得了较好的效果。这些结果也优于其他最先进的方法,如 OSEM、MAPOSEM 和 3DUNET-MAPEM。与其他方法的比较表明,我们的方法具有优越性,因为它在所有三个指标上都优于所有其他方法。
所提出的 TrUNET-MAPEM 模型在低计数 PET 图像重建领域取得了重大进展。结果表明,该模型具有临床应用的潜力,因为与其他重建和后处理算法相比,它可以生成噪声水平更低、边缘保存更好的图像。该方法在各种疾病的早期检测和诊断方面可能具有重要的临床应用价值。