Suppr超能文献

基于特征匹配和任务特定感知损失的生成对抗网络的超低剂量 PET 重建。

Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss.

机构信息

Department of Radiology, Stanford University, Stanford, CA, 94305, USA.

Subtle Medical, Menlo Park, CA, 94025, USA.

出版信息

Med Phys. 2019 Aug;46(8):3555-3564. doi: 10.1002/mp.13626. Epub 2019 Jun 17.

Abstract

PURPOSE

Our goal was to use a generative adversarial network (GAN) with feature matching and task-specific perceptual loss to synthesize standard-dose amyloid Positron emission tomography (PET) images of high quality and including accurate pathological features from ultra-low-dose PET images only.

METHODS

Forty PET datasets from 39 participants were acquired with a simultaneous PET/MRI scanner following injection of 330 ± 30 MBq of the amyloid radiotracer 18F-florbetaben. The raw list-mode PET data were reconstructed as the standard-dose ground truth and were randomly undersampled by a factor of 100 to reconstruct 1% low-dose PET scans. A 2D encoder-decoder network was implemented as the generator to synthesize a standard-dose image and a discriminator was used to evaluate them. The two networks contested with each other to achieve high-visual quality PET from the ultra-low-dose PET. Multi-slice inputs were used to reduce noise by providing the network with 2.5D information. Feature matching was applied to reduce hallucinated structures. Task-specific perceptual loss was designed to maintain the correct pathological features. The image quality was evaluated by peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) metrics with and without each of these modules. Two expert radiologists were asked to score image quality on a 5-point scale and identified the amyloid status (positive or negative).

RESULTS

With only low-dose PET as input, the proposed method significantly outperformed Chen et al.'s method (Chen et al. Radiology. 2018;290:649-656) (which shows the best performance in this task) with the same input (PET-only model) by 1.87 dB in PSNR, 2.04% in SSIM, and 24.75% in RMSE. It also achieved comparable results to Chen et al.'s method which used additional magnetic resonance imaging (MRI) inputs (PET-MR model). Experts' reading results showed that the proposed method could achieve better overall image quality and maintain better pathological features indicating amyloid status than both PET-only and PET-MR models proposed by Chen et al. CONCLUSION: Standard-dose amyloid PET images can be synthesized from ultra-low-dose images using GAN. Applying adversarial learning, feature matching, and task-specific perceptual loss are essential to ensure image quality and the preservation of pathological features.

摘要

目的

我们的目标是使用具有特征匹配和特定于任务的感知损失的生成对抗网络(GAN),仅从超低剂量 PET 图像中合成高质量的标准剂量淀粉样 PET 图像,并包含准确的病理特征。

方法

使用同时进行的 PET/MRI 扫描仪从 39 名参与者中获取 40 个 PET 数据集,在注射 330±30MBq 淀粉样示踪剂 18F-氟贝他滨后进行。原始列表模式 PET 数据被重建为标准剂量的真实值,并随机按 100 倍的因子进行欠采样,以重建 1%的低剂量 PET 扫描。实现了二维编码器-解码器网络作为生成器来合成标准剂量图像,并使用鉴别器来评估它们。两个网络相互竞争,从超低剂量 PET 中获得高视觉质量的 PET。使用多切片输入通过为网络提供 2.5D 信息来减少噪声。应用特征匹配以减少幻觉结构。设计了特定于任务的感知损失以保持正确的病理特征。使用带有和不带有这些模块的峰值信噪比(PSNR)、结构相似性(SSIM)和均方根误差(RMSE)指标来评估图像质量。两位专家放射科医生被要求对图像质量进行 5 分制评分,并确定淀粉样状态(阳性或阴性)。

结果

仅使用低剂量 PET 作为输入,与 Chen 等人的方法(Chen 等人,放射学。2018 年;290:649-656)相比,所提出的方法显著优于仅使用低剂量 PET 作为输入的方法(Chen 等人的方法在这项任务中表现最佳),PSNR 提高了 1.87dB,SSIM 提高了 2.04%,RMSE 降低了 24.75%。它还与 Chen 等人使用额外的磁共振成像(MRI)输入(PET-MR 模型)的方法取得了可比的结果。专家的阅读结果表明,与 Chen 等人提出的仅使用 PET 和 PET-MR 模型相比,所提出的方法可以获得更好的整体图像质量,并更好地保持病理特征,表明淀粉样状态。

结论

可以使用 GAN 从超低剂量图像中合成标准剂量淀粉样 PET 图像。应用对抗性学习、特征匹配和特定于任务的感知损失对于确保图像质量和保留病理特征至关重要。

相似文献

引用本文的文献

7
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.用于不同计数水平低计数PET去噪的统一噪声感知网络
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.
10
An overview of artificial intelligence in medical physics and radiation oncology.医学物理与放射肿瘤学中的人工智能概述。
J Natl Cancer Cent. 2023 Aug 11;3(3):211-221. doi: 10.1016/j.jncc.2023.08.002. eCollection 2023 Sep.

本文引用的文献

3
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
8
PET/CT in diagnosis of dementia.正电子发射断层扫描/计算机断层扫描在痴呆诊断中的应用。
Ann N Y Acad Sci. 2011 Jun;1228:81-92. doi: 10.1111/j.1749-6632.2011.06015.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验