Utrecht University, Princetonlaan 8A, 3584CB Utrecht, the Netherlands.
Utrecht University, Princetonlaan 8A, 3584CB Utrecht, the Netherlands.
Water Res. 2024 Jan 1;248:120844. doi: 10.1016/j.watres.2023.120844. Epub 2023 Nov 8.
Internal phosphorus (P) loading is a key water quality challenge for shallow lakes. Addition of iron (Fe) salts has been used to enhance P retention in lake sediments. However, its effects on sediment geochemistry are poorly studied, albeit pivotal for remediation success. Here, we assess the factors controlling the retention of P and long-term effects following application of FeCl (0.5-1 mol Fe/m, 2010) in the eutrophic, shallow peat lake Terra Nova (the Netherlands). Treatment reduced P levels in the lake for two years, but afterwards summer release of P intensified, resulting in higher surface water P concentrations than before treatment. Porewater and sediment analyses indicate that the majority of the added Fe is still undergoing redox cycling within the top 10 cm of sediment accounting for the binding of up to 70 % of sedimentary P. Sequential extractions further suggest that organic matter (OM) plays a key role in the resulting P and Fe dynamics: While reduction of P binding Fe(III) phases results in P release to porewaters, the produced Fe remains bound to the solid phase presumably stabilized by OM. This causes P release from the sediments in excess to Fe during temporary low oxygen conditions in summer months, as confirmed by whole core flux incubation experiments. Quantitative coprecipitation of P with Fe upon reoxygenation of the water body is then impossible, leading to a gradual increase in surface water P. This first long-term study on a shallow peat lake underpins the role of OM for Fe cycling and the need to carefully consider the sediment properties and diagenetic pathways in the planning of Fe-amendments.
内部磷(P)负荷是浅水湖泊水质的一个关键挑战。添加铁(Fe)盐已被用于增强湖泊沉积物中的 P 保留。然而,尽管对于修复成功至关重要,但对其对沉积物地球化学的影响的研究甚少。在这里,我们评估了控制 P 保留的因素以及在富营养浅水泥炭湖 Terra Nova(荷兰)中应用 FeCl(0.5-1 mol Fe/m,2010 年)后的长期影响。处理在两年内降低了湖泊中的 P 水平,但随后夏季 P 的释放加剧,导致地表水 P 浓度高于处理前。孔隙水和沉积物分析表明,添加的大部分 Fe 仍在沉积物的前 10cm 内进行氧化还原循环,这解释了高达 70%的沉积物 P 的结合。顺序提取进一步表明,有机质(OM)在由此产生的 P 和 Fe 动态中起着关键作用:虽然 P 结合的 Fe(III)相的还原导致 P 释放到孔隙水中,但产生的 Fe 仍与固体相结合,据推测是由 OM 稳定的。这导致在夏季低氧条件下,Fe 释放到沉积物中,这与整个核心通量孵育实验得到的结果一致。水体重新充氧后,P 与 Fe 的定量共沉淀是不可能的,导致地表水 P 逐渐增加。这是对浅水泥炭湖的首次长期研究,强调了 OM 对 Fe 循环的作用,需要在规划 Fe 添加剂时仔细考虑沉积物特性和成岩途径。