Suppr超能文献

非热等离子体改性静电纺微晶纤维素/壳聚糖多孔复合纳米纤维膜对气态甲醛的吸附。

Electrospun microcrystalline cellulose/chitosan porous composite nanofibrous membranes modified by non-thermal plasma for gaseous formaldehyde adsorption.

机构信息

International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, PR China.

International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Int J Biol Macromol. 2024 Jan;256(Pt 2):128399. doi: 10.1016/j.ijbiomac.2023.128399. Epub 2023 Nov 23.

Abstract

To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO) and nitrogen (N) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g) of BPNMs was achieved under a N atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.

摘要

为了开发一种用于去除室内污染甲醛(HCHO)气体的绿色简便吸附剂,通过静电纺丝制备了由微晶纤维素/壳聚糖衍生的生物质多孔纳米纤维膜(BPNMs)。通过在二氧化碳(CO)和氮气(N)气氛下的非热等离子体改性,在 BPNMs 表面引入了具有多种含氧(O)和含氮(N)官能团的增强化学吸附位。纳米纤维膜的平均纳米纤维直径及其纳米机械弹性模量和硬度值分别从 341nm 降低至 175-317nm 和从 2.00GPa 和 0.25GPa 降低至 1.70GPa 和 0.21GPa。等离子体激活后,纤维的亲水性(WCA=0°)和结晶度更高。在氮气气氛下,等离子体功率为 30W,处理时间为 3min 时,BPNMs 的最佳 HCHO 吸附容量(134.16mg g)达到 134.16mg g,比对照样品提高了 62.42%。吡咯 N、吡啶 N、CO 和 O-C=O 是对 BPNMs 化学吸附增强的最显著的含氧和含氮官能团。吸附机理涉及物理吸附和化学吸附的协同结合。这项研究提供了一种将清洁等离子体激活与静电纺丝相结合的新策略,用于高效去除气态 HCHO。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验