Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation.
Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation.
Biochem Biophys Res Commun. 2024 Jan 1;690:149276. doi: 10.1016/j.bbrc.2023.149276. Epub 2023 Nov 18.
Ferritin is a universal protein complex responsible for iron perception in almost all living organisms and has applications from fundamental biophysics to drug delivery and structure-based immunogen design. Different platforms based on ferritin share similar technological challenges limiting their development - control of self-assembling processes of ferritin itself as well as ferritin-based chimeric recombinant protein complexes. In our research, we studied self-assembly processes of ferritin-based protein complexes under different expression conditions. We fused a ferritin subunit with a SMT3 protein tag, a homolog of human Small Ubiquitin-like Modifier (SUMO-tag), which was taken to destabilize ferritin 3-fold channel contacts and increase ferritin-SUMO subunits solubility. We first obtained the octameric protein complex of ferritin-SUMO (8xFer-SUMO) and studied its structural organization by small-angle X-ray scattering (SAXS). Obtained SAXS data correspond well with the high-resolution models predicted by AlphaFold and CORAL software of an octameric assembly around the 4-fold channel of ferritin without formation of 3-fold channels. Interestingly, three copies of 8xFer-SUMO do not assemble into 24-meric globules. Thus, we first obtained and structurally characterized ferritin-based self-assembling oligomers in a deadlock state. Deadlock oligomeric states of ferritin extend the known scheme of its self-assembly process, being new potential tools for a number of applications. Finally, our results might open new directions for various biotechnological platforms utilizing ferritin-based tools.
铁蛋白是一种普遍存在的蛋白质复合物,负责几乎所有生物体的铁感知,其应用从基础生物物理学到药物输送和基于结构的免疫原设计。不同基于铁蛋白的平台都面临着类似的技术挑战,限制了它们的发展——控制铁蛋白本身以及基于铁蛋白的嵌合重组蛋白复合物的自组装过程。在我们的研究中,我们研究了不同表达条件下基于铁蛋白的蛋白复合物的自组装过程。我们将铁蛋白亚基与 SMT3 蛋白标签融合,SMT3 是人类小分子泛素样修饰物(SUMO 标签)的同源物,它被用来破坏铁蛋白 3 倍通道接触并增加铁蛋白-SUMO 亚基的溶解度。我们首先获得了铁蛋白-SUMO 的八聚体蛋白复合物(8xFer-SUMO),并通过小角 X 射线散射(SAXS)研究了其结构组织。获得的 SAXS 数据与 AlphaFold 和 CORAL 软件预测的高分辨率模型非常吻合,模型显示八聚体组装在铁蛋白的 4 倍通道周围,没有形成 3 倍通道。有趣的是,三个拷贝的 8xFer-SUMO 不会组装成 24 聚体球体。因此,我们首次获得并结构表征了处于僵局状态的基于铁蛋白的自组装低聚物。铁蛋白的僵局低聚物状态扩展了其自组装过程的已知方案,成为许多应用的新潜在工具。最后,我们的结果可能为利用基于铁蛋白的工具的各种生物技术平台开辟新的方向。