Centre for Clinical Brain Sciences & UK Dementia Research Institute Centre, University of Edinburgh, UK.
Centre for Clinical Brain Sciences & UK Dementia Research Institute Centre, University of Edinburgh, UK.
J Stroke Cerebrovasc Dis. 2024 Jan;33(1):107512. doi: 10.1016/j.jstrokecerebrovasdis.2023.107512. Epub 2023 Nov 25.
The extent and distribution of intracranial hemorrhage (ICH) directly affects clinical management. Artificial intelligence (AI) software can detect and may delineate ICH extent on brain CT. We evaluated e-ASPECTS software (Brainomix Ltd.) performance for ICH delineation.
We qualitatively assessed software delineation of ICH on CT using patients from six stroke trials. We assessed hemorrhage delineation in five compartments: lobar, deep, posterior fossa, intraventricular, extra-axial. We categorized delineation as excellent, good, moderate, or poor. We assessed quality of software delineation with number of affected compartments in univariate analysis (Kruskall-Wallis test) and ICH location using logistic regression (dependent variable: dichotomous delineation categories 'excellent-good' versus 'moderate-poor'), and report odds ratios (OR) and 95 % confidence intervals (95 %CI).
From 651 patients with ICH (median age 75 years, 53 % male), we included 628 with assessable CTs. Software delineation of ICH extent was 'excellent' in 189/628 (30 %), 'good' in 255/628 (41 %), 'moderate' in 127/628 (20 %), and 'poor' in 57/628 cases (9 %). The quality of software delineation of ICH was better when fewer compartments were affected (Z = 3.61-6.27; p = 0.0063). Software delineation of ICH extent was more likely to be 'excellent-good' quality when lobar alone (OR = 1.56, 95 %CI = 0.97-2.53) but 'moderate-poor' with any intraventricular (OR = 0.56, 95 %CI = 0.39-0.81, p = 0.002) or any extra-axial (OR = 0.41, 95 %CI = 0.27-0.62, p<0.001) extension.
Delineation of ICH extent on stroke CT scans by AI software was excellent or good in 71 % of cases but was more likely to over- or under-estimate extent when ICH was either more extensive, intraventricular, or extra-axial.
颅内出血 (ICH) 的范围和分布直接影响临床管理。人工智能 (AI) 软件可以检测并可能描绘脑 CT 上的 ICH 范围。我们评估了 e-ASPECTS 软件(Brainomix Ltd.)在 ICH 描绘方面的性能。
我们使用来自六个卒中试验的患者定性评估了软件对 CT 上 ICH 的描绘。我们评估了五个部位的出血描绘:额叶、深部、后颅窝、脑室内、脑外。我们将描绘分类为优秀、良好、中等或差。我们使用单变量分析( Kruskall-Wallis 检验)评估了软件描绘的质量,并使用逻辑回归评估了 ICH 位置(因变量:二分描绘类别“优秀-良好”与“中等-差”),并报告了比值比 (OR) 和 95%置信区间 (95%CI)。
在 651 名 ICH 患者(中位年龄 75 岁,53%为男性)中,我们纳入了 628 名可评估 CT 的患者。软件描绘的 ICH 范围为“优秀”的有 189/628 例(30%),“良好”的有 255/628 例(41%),“中等”的有 127/628 例(20%),“差”的有 57/628 例(9%)。受影响的部位越少,软件描绘的 ICH 质量越好(Z=3.61-6.27;p=0.0063)。当仅为额叶受累时,软件描绘的 ICH 范围更有可能为“优秀-良好”质量(OR=1.56,95%CI=0.97-2.53),但当存在任何脑室内(OR=0.56,95%CI=0.39-0.81,p=0.002)或任何脑外(OR=0.41,95%CI=0.27-0.62,p<0.001)延伸时,ICH 则为“中等-差”质量。
AI 软件在卒中 CT 扫描上描绘 ICH 范围时,71%的病例为优秀或良好,但当 ICH 范围更广泛、脑室内或脑外时,更有可能过高或过低估计范围。