Yousafzai M S, Yadav V, Amiri S, Staddon M F, Errami Y, Jaspard G, Banerjee S, Murrell M
Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA.
Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA.
Phys Rev X. 2022 Jul-Sep;12(3). doi: 10.1103/physrevx.12.031027. Epub 2022 Aug 17.
Cell-matrix interfacial energies and the energies of matrix deformations may be comparable on cellular length-scales, yet how capillary effects influence tis sue shape and motion are unknown. In this work, we induce wetting (spreading and migration) of cell aggregates, as models of active droplets onto adhesive substrates of varying elasticity and correlate the dynamics of wetting to the balance of interfacial tensions. Upon wetting rigid substrates, cell-substrate tension drives outward expansion of the monolayer. By contrast, upon wetting compliant substrates, cell substrate tension is attenuated and aggregate capillary forces contribute to internal pressures that drive expansion. Thus, we show by experiments, data-driven modeling and computational simulations that myosin-driven 'active elasto-capillary' effects enable adaptation of wetting mechanisms to substrate rigidity and introduce a novel, pressure-based mechanism for guiding collective cell motion.
在细胞长度尺度上,细胞-基质界面能和基质变形能可能相当,但毛细管效应如何影响组织形状和运动尚不清楚。在这项工作中,我们诱导细胞聚集体(作为活性液滴的模型)在具有不同弹性的粘性底物上发生润湿(铺展和迁移),并将润湿动力学与界面张力的平衡相关联。在润湿刚性底物时,细胞-底物张力驱动单层向外扩展。相比之下,在润湿柔性底物时,细胞-底物张力减弱,聚集体毛细管力导致驱动扩展的内部压力。因此,我们通过实验、数据驱动建模和计算模拟表明,肌球蛋白驱动的“活性弹性毛细管”效应能够使润湿机制适应底物刚性,并引入一种基于压力的新型机制来引导集体细胞运动。