Suppr超能文献

细胞-基质弹性毛细管相互作用驱动基于压力的细胞聚集体润湿。

Cell-Matrix Elastocapillary Interactions Drive Pressure-based Wetting of Cell Aggregates.

作者信息

Yousafzai M S, Yadav V, Amiri S, Staddon M F, Errami Y, Jaspard G, Banerjee S, Murrell M

机构信息

Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA.

Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA.

出版信息

Phys Rev X. 2022 Jul-Sep;12(3). doi: 10.1103/physrevx.12.031027. Epub 2022 Aug 17.

Abstract

Cell-matrix interfacial energies and the energies of matrix deformations may be comparable on cellular length-scales, yet how capillary effects influence tis sue shape and motion are unknown. In this work, we induce wetting (spreading and migration) of cell aggregates, as models of active droplets onto adhesive substrates of varying elasticity and correlate the dynamics of wetting to the balance of interfacial tensions. Upon wetting rigid substrates, cell-substrate tension drives outward expansion of the monolayer. By contrast, upon wetting compliant substrates, cell substrate tension is attenuated and aggregate capillary forces contribute to internal pressures that drive expansion. Thus, we show by experiments, data-driven modeling and computational simulations that myosin-driven 'active elasto-capillary' effects enable adaptation of wetting mechanisms to substrate rigidity and introduce a novel, pressure-based mechanism for guiding collective cell motion.

摘要

在细胞长度尺度上,细胞-基质界面能和基质变形能可能相当,但毛细管效应如何影响组织形状和运动尚不清楚。在这项工作中,我们诱导细胞聚集体(作为活性液滴的模型)在具有不同弹性的粘性底物上发生润湿(铺展和迁移),并将润湿动力学与界面张力的平衡相关联。在润湿刚性底物时,细胞-底物张力驱动单层向外扩展。相比之下,在润湿柔性底物时,细胞-底物张力减弱,聚集体毛细管力导致驱动扩展的内部压力。因此,我们通过实验、数据驱动建模和计算模拟表明,肌球蛋白驱动的“活性弹性毛细管”效应能够使润湿机制适应底物刚性,并引入一种基于压力的新型机制来引导集体细胞运动。

相似文献

1
Cell-Matrix Elastocapillary Interactions Drive Pressure-based Wetting of Cell Aggregates.
Phys Rev X. 2022 Jul-Sep;12(3). doi: 10.1103/physrevx.12.031027. Epub 2022 Aug 17.
2
Active wetting of epithelial tissues: modeling considerations.
Eur Biophys J. 2023 Feb;52(1-2):1-15. doi: 10.1007/s00249-022-01625-w. Epub 2023 Jan 2.
3
How cells flow in the spreading of cellular aggregates.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8055-60. doi: 10.1073/pnas.1323788111. Epub 2014 May 16.
4
Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading.
Soft Matter. 2022 Oct 19;18(40):7877-7886. doi: 10.1039/d2sm00757f.
5
Confinement induces internal flows in adherent cell aggregates.
J R Soc Interface. 2024 May;21(214):20240105. doi: 10.1098/rsif.2024.0105. Epub 2024 May 22.
6
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12926-12931. doi: 10.1073/pnas.1811348115. Epub 2018 Nov 30.
7
Elastocapillary deformations on partially-wetting substrates: rival contact-line models.
Soft Matter. 2014 Oct 7;10(37):7361-9. doi: 10.1039/c4sm00891j.
8
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
9
Effect of external tension on the wetting of an elastic sheet.
Phys Rev E. 2023 Mar;107(3-2):035101. doi: 10.1103/PhysRevE.107.035101.
10
Elasticity-to-Capillarity Transition in Soft Substrate Deformation.
Nano Lett. 2021 Dec 22;21(24):10361-10367. doi: 10.1021/acs.nanolett.1c03643. Epub 2021 Dec 9.

引用本文的文献

1
An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells.
EMBO J. 2025 Jan;44(1):75-106. doi: 10.1038/s44318-024-00309-9. Epub 2024 Nov 21.
2
Patterning and folding of intestinal villi by active mesenchymal dewetting.
Cell. 2024 Jun 6;187(12):3072-3089.e20. doi: 10.1016/j.cell.2024.04.039. Epub 2024 May 22.
3
Confinement induces internal flows in adherent cell aggregates.
J R Soc Interface. 2024 May;21(214):20240105. doi: 10.1098/rsif.2024.0105. Epub 2024 May 22.
4
Different contractility modes control cell escape from multicellular spheroids and tumor explants.
APL Bioeng. 2024 May 7;8(2):026110. doi: 10.1063/5.0188186. eCollection 2024 Jun.
5
Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids.
APL Bioeng. 2024 May 3;8(2):026109. doi: 10.1063/5.0191765. eCollection 2024 Jun.
6
Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective.
Biosensors (Basel). 2023 Sep 24;13(10):905. doi: 10.3390/bios13100905.
7
SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces.
Mol Biol Cell. 2023 Nov 1;34(12):ar122. doi: 10.1091/mbc.E23-03-0103. Epub 2023 Sep 6.
8
Patterning and folding of intestinal villi by active mesenchymal dewetting.
bioRxiv. 2023 Aug 15:2023.06.25.546328. doi: 10.1101/2023.06.25.546328.
9
Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading.
Soft Matter. 2022 Oct 19;18(40):7877-7886. doi: 10.1039/d2sm00757f.

本文引用的文献

1
Avalanches during epithelial tissue growth; Uniform Growth and a drosophila eye disc model.
PLoS Comput Biol. 2022 Mar 18;18(3):e1009952. doi: 10.1371/journal.pcbi.1009952. eCollection 2022 Mar.
2
Active Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates.
Phys Rev Lett. 2022 Jan 28;128(4):048103. doi: 10.1103/PhysRevLett.128.048103.
3
Introduction to Active Matter.
Soft Matter. 2020 Aug 12;16(31):7185-7190. doi: 10.1039/d0sm90137g.
4
Wound Healing Coordinates Actin Architectures to Regulate Mechanical Work.
Nat Phys. 2019;15:696-705. doi: 10.1038/s41567-019-0485-9. Epub 2019 Apr 8.
5
Active wetting of epithelial tissues.
Nat Phys. 2019 Jan;15(1):79-88. doi: 10.1038/s41567-018-0279-5. Epub 2018 Sep 24.
6
Surface and Bulk Stresses Drive Morphological Changes in Fibrous Microtissues.
Biophys J. 2019 Sep 3;117(5):975-986. doi: 10.1016/j.bpj.2019.07.041. Epub 2019 Jul 31.
7
Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12926-12931. doi: 10.1073/pnas.1811348115. Epub 2018 Nov 30.
8
Entropy production rate is maximized in non-contractile actomyosin.
Nat Commun. 2018 Nov 23;9(1):4948. doi: 10.1038/s41467-018-07413-5.
9
Role of Substrate Stiffness in Tissue Spreading: Wetting Transition and Tissue Durotaxis.
Langmuir. 2019 Jun 11;35(23):7571-7577. doi: 10.1021/acs.langmuir.8b02037. Epub 2018 Oct 25.
10
Force localization modes in dynamic epithelial colonies.
Mol Biol Cell. 2018 Nov 15;29(23):2835-2847. doi: 10.1091/mbc.E18-05-0336. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验