Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland.
Adv Mater. 2024 Feb;36(6):e2307639. doi: 10.1002/adma.202307639. Epub 2023 Dec 8.
Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.
治疗骨感染并确保骨修复是现代骨科面临的最大全球性挑战之一,由于长期使用抗生素治疗和感染组织切除后出现严重的大骨缺损,导致抗菌药物耐药性(AMR)风险变得更加复杂。一个理想的多方面解决方案将在不长期使用抗生素的情况下消除细菌感染,同时刺激成骨和血管生成。在这里,一种基于胶原的多功能支架通过利用无抗生素抗菌纳米粒子(铜掺杂生物活性玻璃,CuBG)的潜力来对抗感染,同时结合基于 microRNA 的基因治疗(利用 microRNA-138 的抑制剂)来刺激成骨和血管生成,从而满足这些需求。CuBG 支架可使革兰氏阳性菌的附着减少 80%以上,展示出抗菌功能。抗 miR-138 纳米粒子在体外诱导人间充质干细胞成骨,并在支架上递送时可治愈大鼠股骨的大承重缺陷。将这两种有前途的技术结合起来,可使多功能抗 miR-138 激活的 CuBG 支架诱导 hMSC 介导的成骨,并在体内鸡胚绒毛尿囊膜模型中刺激血管生成。总的来说,这种多功能支架可以在诱导骨修复的同时,通过成骨和血管生成偶联来催化细菌的杀伤机制,使该平台成为治疗和修复复杂骨感染的一种有前途的多功能策略。