Lin Jing, Schaller Mareen, Cherkashinin Gennady, Indris Sylvio, Du Jianxuan, Ritter Clemens, Kondrakov Aleksandr, Janek Jürgen, Brezesinski Torsten, Strauss Florian
Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Small. 2024 Apr;20(15):e2306832. doi: 10.1002/smll.202306832. Epub 2023 Nov 27.
Superionic conductors are key components of solid-state batteries (SSBs). Multicomponent or high-entropy materials, offering a vast compositional space for tailoring properties, have recently attracted attention as novel solid electrolytes (SEs). However, the influence of synthetic parameters on ionic conductivity in compositionally complex SEs has not yet been investigated. Herein, the effect of cooling rate after high-temperature annealing on charge transport in the multicationic substituted lithium argyrodite Li[PSiGeSb]SI is reported. It is demonstrated that a room-temperature ionic conductivity of ∼12 mS cm can be achieved upon cooling at a moderate rate, superior to that of fast- and slow-cooled samples. To rationalize the findings, the material is probed using powder diffraction, nuclear magnetic resonance and X-ray photoelectron spectroscopy combined with electrochemical methods. In the case of moderate cooling rate, favorable structural (bulk) and compositional (surface) characteristics for lithium diffusion evolve. Li[PSiGeSb]SI is also electrochemically tested in pellet-type SSBs with a layered Ni-rich oxide cathode. Although delivering larger specific capacities than LiPSCl-based cells at high current rates, the lower (electro)chemical stability of the high-entropy Li-ion conductor led to pronounced capacity fading. The research data indicate that subtle changes in bulk structure and surface composition strongly affect the electrical conductivity of high-entropy lithium argyrodites.
超离子导体是固态电池(SSB)的关键组件。多组分或高熵材料为定制性能提供了广阔的成分空间,最近作为新型固体电解质(SE)受到了关注。然而,合成参数对成分复杂的SE中离子电导率的影响尚未得到研究。在此,报道了高温退火后的冷却速率对多阳离子取代的锂辉石Li[PSiGeSb]SI中电荷传输的影响。结果表明,以适中的速率冷却时可实现约12 mS cm的室温离子电导率,优于快速冷却和缓慢冷却的样品。为合理解释这些发现,结合电化学方法,使用粉末衍射、核磁共振和X射线光电子能谱对该材料进行了探测。在适中冷却速率的情况下,锂扩散出现了有利的结构(体相)和成分(表面)特征。Li[PSiGeSb]SI也在具有层状富镍氧化物阴极的颗粒型SSB中进行了电化学测试。尽管在高电流速率下比基于LiPSCl的电池具有更大的比容量,但高熵锂离子导体较低的(电)化学稳定性导致了明显的容量衰减。研究数据表明,体相结构和表面成分的细微变化强烈影响高熵锂辉石的电导率。