Xuan Xinmiao, Huang Shule, Qin Moran, Shen Jinfeng, Wang Lirong, Zhang Xiaoming, Zhang Junwei, Lu Xubing, Hou Zhipeng, Gao Xingsen, Zhang Zhang, Liu Junming
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
ACS Appl Mater Interfaces. 2023 Dec 6;15(48):55753-55764. doi: 10.1021/acsami.3c12491. Epub 2023 Nov 27.
Rhenium disulfide (ReS) is a promising piezoelectric catalyst due to its excellent electron transfer ability and abundant unsaturated sites. The 1T' phase structure leads to the evolution of ReS into a centrosymmetric spatial structure, which restricts its application in piezoelectric catalysis. Herein, we propose a controllable defect engineering strategy to trigger the piezoelectric response of ReS. The introduction of vacancy defects disrupts the initial centrosymmetric structure, which breaks the piezoelectric polarization bond and generates piezoelectric properties. By using transmission electron microscopy, we characterized it at the atomic scale and determined that vacancy defects contribute to an excellent piezoelectric property through first-principles calculations. Notably, the piezoelectric coefficient of the catalyst with 40 s-etching (ReS@C-40) is 23.07 pm/V, an order of magnitude greater than other transition metal dichalcogenides. It demonstrated the feasibility of optimizing piezoelectric properties by increasing the conformational asymmetry. Based on its remarkable piezoelectric activity, ReS@C-40 exhibits highly efficient piezo-photocatalytic synergistic sterilization performance with 99.99% eradication of and 96.67% of within 30 min. This pioneering research on the coupling effect of ReS in piezoelectric catalysis and photocatalysis provides ideas for the development of piezo-photocatalysts and efficient water purification technologies.
二硫化铼(ReS)因其出色的电子转移能力和丰富的不饱和位点而成为一种有前景的压电催化剂。1T'相结构导致ReS演变成中心对称的空间结构,这限制了其在压电催化中的应用。在此,我们提出一种可控缺陷工程策略来触发ReS的压电响应。空位缺陷的引入破坏了初始的中心对称结构,打破了压电极化键并产生压电性能。通过透射电子显微镜,我们在原子尺度上对其进行了表征,并通过第一性原理计算确定空位缺陷有助于优异的压电性能。值得注意的是,蚀刻40 s的催化剂(ReS@C-40)的压电系数为23.07 pm/V,比其他过渡金属二硫属化物大一个数量级。这证明了通过增加构象不对称性来优化压电性能的可行性。基于其显著的压电活性,ReS@C-40在30分钟内展现出高效的压电光催化协同杀菌性能,对大肠杆菌的杀灭率为99.99%,对金黄色葡萄球菌的杀灭率为96.67%。这项关于ReS在压电催化和光催化中耦合效应的开创性研究为压电光催化剂的开发和高效水净化技术提供了思路。