Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan.
Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
FASEB J. 2023 Dec;37(12):e23310. doi: 10.1096/fj.202300830RR.
Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.
血管通透性由血管内皮细胞(VE)-钙黏蛋白介导的内皮细胞间连接动态但紧密地控制,以维持内环境稳定。因此,VE-钙黏蛋白介导的细胞黏附受损会导致通透性增加,促进各种疾病过程的发展和进展。值得注意的是,肺部是一个高度脆弱的器官,肺部炎症和感染会导致血管渗漏。在此,我们发现小 GTPase Rap1 在维持小鼠肺部内皮屏障功能方面起着至关重要的作用。内皮细胞特异性 Rap1a/Rap1b 双敲除小鼠表现出严重的肺水肿。它们还表现出心脏血管渗漏,但在大脑中没有。肺动静脉的正面分析和肺的 3D-免疫荧光分析表明,Rap1 通过动态肌动蛋白细胞骨架重排增强 VE-钙黏蛋白介导的内皮细胞间连接。Rap1 通过抑制 Rho-ROCK 通路诱导的细胞质非肌肉肌球蛋白 II(NM-II)的激活来抑制垂直结合 VE-钙黏蛋白黏附的细胞质肌动蛋白束的形成。同时,Rap1 诱导连接 NM-II 的激活,以形成环形肌动蛋白束,将 VE-钙黏蛋白锚定并稳定在细胞连接处。我们还表明,在 Rap1 两个基因中的一个基因中携带 Rap1a 或 Rap1b 的一个等位基因的小鼠比野生型小鼠更容易受到脂多糖(LPS)诱导的肺血管渗漏的影响,而通过施用 007(Epac 的激活剂)激活 Rap1 可减轻 LPS 诱导的野生型小鼠肺内皮通透性增加。因此,我们证明 Rap1 在生理条件下对于维持肺内皮屏障功能至关重要,并为炎症诱导的肺血管渗漏提供保护。