Suppr超能文献

基于 U-net-LSTM 框架的超声改良束长估计。

Improved Fascicle Length Estimates From Ultrasound Using a U-net-LSTM Framework.

出版信息

IEEE Int Conf Rehabil Robot. 2023 Sep;2023:1-6. doi: 10.1109/ICORR58425.2023.10328385.

Abstract

Brightness-mode (B-mode) ultrasound has been used to measure in vivo muscle dynamics for assistive devices. Estimation of fascicle length from B-mode images has now transitioned from time-consuming manual processes to automatic methods, but these methods fail to reach pixel-wise accuracy across extended locomotion. In this work, we aim to address this challenge by combining a U-net architecture with proven segmentation abilities with an LSTM component that takes advantage of temporal information to improve validation accuracy in the prediction of fascicle lengths. Using 64,849 ultrasound frames of the medial gastrocnemius, we semi-manually generated ground-truth for training the proposed U-net-LSTM. Compared with a traditional U-net and a CNNLSTM configuration, the validation accuracy, mean square error (MSE), and mean absolute error (MAE) of the proposed U-net-LSTM show better performance (91.4%, MSE =0.1± 0.03 mm, MAE =0.2± 0.05 mm). The proposed framework could be used for real-time, closed-loop wearable control during real-world locomotion.

摘要

亮度模式(B 模式)超声已被用于测量辅助设备中的活体肌肉动力学。现在,从 B 模式图像估计肌束长度已经从耗时的手动过程过渡到自动方法,但这些方法无法在扩展的运动过程中达到逐像素的精度。在这项工作中,我们旨在通过结合具有证明分割能力的 U-net 架构和利用时间信息的 LSTM 组件来解决这一挑战,以提高在预测肌束长度方面的验证准确性。使用内侧比目鱼肌的 64,849 个超声帧,我们半自动地生成了地面真实数据,用于训练所提出的 U-net-LSTM。与传统的 U-net 和 CNNLSTM 配置相比,所提出的 U-net-LSTM 的验证准确性、均方误差(MSE)和平均绝对误差(MAE)表现出更好的性能(91.4%,MSE=0.1±0.03mm,MAE=0.2±0.05mm)。所提出的框架可用于在现实运动中进行实时、闭环可穿戴控制。

相似文献

1
Improved Fascicle Length Estimates From Ultrasound Using a U-net-LSTM Framework.
IEEE Int Conf Rehabil Robot. 2023 Sep;2023:1-6. doi: 10.1109/ICORR58425.2023.10328385.
2
Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
PLoS One. 2021 May 26;16(5):e0246611. doi: 10.1371/journal.pone.0246611. eCollection 2021.
3
Automatic Fascicle Length Estimation on Muscle Ultrasound Images With an Orientation-Sensitive Segmentation.
IEEE Trans Biomed Eng. 2015 Dec;62(12):2828-36. doi: 10.1109/TBME.2015.2445345. Epub 2015 Jun 16.
4
Automatic tracking of medial gastrocnemius fascicle length during human locomotion.
J Appl Physiol (1985). 2011 Nov;111(5):1491-6. doi: 10.1152/japplphysiol.00530.2011. Epub 2011 Aug 11.
5
Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.
Ultrasonics. 2015 Mar;57:72-83. doi: 10.1016/j.ultras.2014.10.020. Epub 2014 Oct 31.
6
Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance.
Sensors (Basel). 2023 Feb 3;23(3):1670. doi: 10.3390/s23031670.
7
UltraTimTrack: a Kalman-filter-based algorithm to track muscle fascicles in ultrasound image sequences.
PeerJ Comput Sci. 2025 Jan 24;11:e2636. doi: 10.7717/peerj-cs.2636. eCollection 2025.
8
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.
9
Reliability and accuracy of ultrasound image analyses completed manually an automated tool.
PeerJ. 2022 Jun 16;10:e13609. doi: 10.7717/peerj.13609. eCollection 2022.
10
Shorter gastrocnemius fascicle lengths in older adults associate with worse capacity to enhance push-off intensity in walking.
Gait Posture. 2020 Mar;77:89-94. doi: 10.1016/j.gaitpost.2020.01.018. Epub 2020 Jan 21.

本文引用的文献

1
Fully Automated Analysis of Muscle Architecture from B-Mode Ultrasound Images with DL_Track_US.
Ultrasound Med Biol. 2024 Feb;50(2):258-267. doi: 10.1016/j.ultrasmedbio.2023.10.011. Epub 2023 Nov 25.
2
Age-Related Reliability of B-Mode Analysis for Tailored Exosuit Assistance.
Sensors (Basel). 2023 Feb 3;23(3):1670. doi: 10.3390/s23031670.
3
TimTrack: A drift-free algorithm for estimating geometric muscle features from ultrasound images.
PLoS One. 2022 Mar 24;17(3):e0265752. doi: 10.1371/journal.pone.0265752. eCollection 2022.
4
Individualization of exosuit assistance based on measured muscle dynamics during versatile walking.
Sci Robot. 2021 Nov 10;6(60):eabj1362. doi: 10.1126/scirobotics.abj1362.
5
Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
PLoS One. 2021 May 26;16(5):e0246611. doi: 10.1371/journal.pone.0246611. eCollection 2021.
6
Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges.
J Appl Physiol (1985). 2020 Apr 1;128(4):978-999. doi: 10.1152/japplphysiol.00835.2019. Epub 2020 Mar 12.
7
Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks.
J R Soc Interface. 2020 Jan;17(162):20190715. doi: 10.1098/rsif.2019.0715. Epub 2020 Jan 29.
8
The force-length-velocity potential of the human soleus muscle is related to the energetic cost of running.
Proc Biol Sci. 2019 Dec 18;286(1917):20192560. doi: 10.1098/rspb.2019.2560.
10
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691. doi: 10.1109/TPAMI.2016.2599174. Epub 2016 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验