使用实时超声成像自动测量比目鱼肌的羽状角和束长。

Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.

机构信息

Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA, USA.

出版信息

Ultrasonics. 2015 Mar;57:72-83. doi: 10.1016/j.ultras.2014.10.020. Epub 2014 Oct 31.

Abstract

Muscle imaging is a promising field of research to understand the biological and bioelectrical characteristics of muscles through the observation of muscle architectural change. Sonomyography (SMG) is a technique which can quantify the real-time architectural change of muscles under different contractions and motions with ultrasound imaging. The pennation angle and fascicle length are two crucial SMG parameters to understand the contraction mechanics at muscle level, but they have to be manually detected on ultrasound images frame by frame. In this study, we proposed an automatic method to quantitatively identify pennation angle and fascicle length of gastrocnemius (GM) muscle based on multi-resolution analysis and line feature extraction, which could overcome the limitations of tedious and time-consuming manual measurement. The method started with convolving Gabor wavelet specially designed for enhancing the line-like structure detection in GM ultrasound image. The resulting image was then used to detect the fascicles and aponeuroses for calculating the pennation angle and fascicle length with the consideration of their distribution in ultrasound image. The performance of this method was tested on computer simulated images and experimental images in vivo obtained from normal subjects. Tests on synthetic images showed that the method could identify the fascicle orientation with an average error less than 0.1°. The result of in vivo experiment showed a good agreement between the results obtained by the automatic and the manual measurements (r=0.94±0.03; p<0.001, and r=0.95±0.02, p<0.001). Furthermore, a significant correlation between the ankle angle and pennation angle (r=0.89±0.05; p<0.001) and fascicle length (r=-0.90±0.04; p<0.001) was found for the ankle plantar flexion. This study demonstrated that the proposed method was able to automatically measure the pennation angle and fascicle length of GM ultrasound images, which made it feasible to investigate muscle-level mechanics more comprehensively in vivo.

摘要

肌肉成像是一个很有前景的研究领域,它可以通过观察肌肉结构的变化来了解肌肉的生物和生物电学特性。超声肌描记术(SMG)是一种可以利用超声成像技术定量测量肌肉在不同收缩和运动状态下实时结构变化的技术。肌节角和肌束长度是理解肌肉水平收缩力学的两个关键 SMG 参数,但它们必须在超声图像上逐帧手动检测。在这项研究中,我们提出了一种基于多分辨率分析和线特征提取的自动方法,用于定量识别比目鱼肌(GM)的肌节角和肌束长度,该方法可以克服手动测量繁琐和耗时的局限性。该方法首先用专门设计的用于增强 GM 超声图像中线状结构检测的 Gabor 小波进行卷积。然后,使用处理后的图像检测肌束和腱膜,以考虑其在超声图像中的分布,计算肌节角和肌束长度。该方法在计算机模拟图像和正常受试者的体内实验图像上进行了测试。在对合成图像的测试中,该方法可以识别肌束方向,平均误差小于 0.1°。体内实验的结果表明,自动测量法和手动测量法的结果具有良好的一致性(r=0.94±0.03;p<0.001 和 r=0.95±0.02;p<0.001)。此外,在踝关节跖屈时,还发现了踝关节角度与肌节角(r=0.89±0.05;p<0.001)和肌束长度(r=-0.90±0.04;p<0.001)之间存在显著相关性。这项研究表明,所提出的方法能够自动测量 GM 超声图像的肌节角和肌束长度,这使得在体内更全面地研究肌肉水平力学成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索