Stewart Kevin A, Lessard Jacob J, Cantor Alexander J, Rynk John F, Bailey Laura S, Sumerlin Brent S
George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
RSC Appl Polym. 2023 Jul 20;1(1):10-18. doi: 10.1039/d3lp00019b. eCollection 2023 Sep 25.
Bio-based vitrimers represent a promising class of thermosetting polymer materials, pairing the recyclability of dynamic covalent networks with the renewability of non-fossil fuel feedstocks. Vanillin, a low-cost lignin derivative, enables facile construction of polyimine networks marked by rapid exchange and sensitivity to acid-catalyzed hydrolysis. Furthermore, the aromatic structure makes it a promising candidate for the design of highly aromatic networks capable of high-performance thermal and dimensional stability. Such properties are paramount in polymeric thermal protection systems. Here, we report on the fabrication of polyimine networks with particularly high aromatic content from a novel trifunctional vanillin monomer prepared from the nucleophilic aromatic substitution of perfluoropyridine (PFP) on a multi-gram scale (>20 g) in high yield (86%). The trifunctional aromatic scaffold was then crosslinked with various diamines to demonstrate tunable viscoelastic behavior and thermal properties, with glass transition temperatures () ranging from 9 to 147 °C, degradation temperatures (5% mass loss) up to approximately 370 °C, and excellent char yields up to 68% at 650 °C under nitrogen. Moreover, the vitrimers displayed mechanical reprocessability over five destruction/healing cycles and rapid chemical recyclability following acidic hydrolysis at mild temperatures. Our findings indicate that vitrimers possessing tunable properties and high-performance thermomechanical behavior can be easily constructed from vanillin and electrophilic aromatic scaffolds for applications in heat-shielding materials and ablative coatings.
生物基玻璃态弹性体是一类很有前景的热固性聚合物材料,它将动态共价网络的可回收性与非化石燃料原料的可再生性结合在一起。香草醛是一种低成本的木质素衍生物,能够轻松构建以快速交换和对酸催化水解敏感为特征的聚亚胺网络。此外,其芳香结构使其成为设计具有高性能热稳定性和尺寸稳定性的高芳香网络的理想候选材料。这些特性在聚合物热防护系统中至关重要。在此,我们报道了一种新型三官能团香草醛单体的制备及其用于制造具有特别高芳香含量的聚亚胺网络,该单体通过全氟吡啶(PFP)的亲核芳香取代反应以多克规模(>20 g)高产率(86%)制备而成。然后将该三官能团芳香支架与各种二胺交联,以展示可调的粘弹性行为和热性能,玻璃化转变温度()范围为9至147°C,降解温度(质量损失5%)高达约370°C,在氮气气氛下650°C时的优异残炭率高达68%。此外,该玻璃态弹性体在五个破坏/愈合循环中表现出机械可再加工性,并且在温和温度下进行酸性水解后具有快速化学可回收性。我们的研究结果表明,由香草醛和亲电芳香支架可以轻松构建具有可调性能和高性能热机械行为的玻璃态弹性体,用于隔热材料和烧蚀涂层等应用。