Hoskins Ian, Rao Shilpa, Tante Charisma, Cenik Can
Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
bioRxiv. 2023 Nov 17:2023.08.02.551517. doi: 10.1101/2023.08.02.551517.
Multiplexed assays of variant effect are powerful methods to profile the consequences of rare variants on gene expression and organismal fitness. Yet, few studies have integrated several multiplexed assays to map variant effects on gene expression in coding sequences. Here, we pioneered a multiplexed assay based on polysome profiling to measure variant effects on translation at scale, uncovering single-nucleotide variants that increase and decrease ribosome load. By combining high-throughput ribosome load data with multiplexed mRNA and protein abundance readouts, we mapped the -regulatory landscape of thousands of catechol--methyltransferase () variants from RNA to protein and found numerous coding variants that alter expression. Finally, we trained machine learning models to map signatures of variant effects on gene expression and uncovered both directional and divergent impacts across expression layers. Our analyses reveal expression phenotypes for thousands of variants in and highlight variant effects on both single and multiple layers of expression. Our findings prompt future studies that integrate several multiplexed assays for the readout of gene expression.
变异效应的多重分析是描绘罕见变异对基因表达和生物体适应性影响的有力方法。然而,很少有研究整合多种多重分析来绘制编码序列中变异对基因表达的影响图谱。在这里,我们开创了一种基于多核糖体分析的多重分析方法,以大规模测量变异对翻译的影响,发现了增加和减少核糖体负载的单核苷酸变异。通过将高通量核糖体负载数据与多重mRNA和蛋白质丰度读数相结合,我们绘制了数千种儿茶酚-O-甲基转移酶(COMT)变异从RNA到蛋白质的调控图谱,发现了许多改变COMT表达的编码变异。最后,我们训练机器学习模型来绘制变异对COMT基因表达影响的特征图谱,并揭示了跨表达层的定向和发散影响。我们的分析揭示了COMT中数千个变异的表达表型,并突出了变异对单层和多层表达的影响。我们的发现促使未来开展整合多种多重分析以读取基因表达的研究。