Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
Mol Syst Biol. 2024 May;20(5):481-505. doi: 10.1038/s44320-024-00018-9. Epub 2024 Feb 14.
Multiplexed assays of variant effect are powerful methods to profile the consequences of rare variants on gene expression and organismal fitness. Yet, few studies have integrated several multiplexed assays to map variant effects on gene expression in coding sequences. Here, we pioneered a multiplexed assay based on polysome profiling to measure variant effects on translation at scale, uncovering single-nucleotide variants that increase or decrease ribosome load. By combining high-throughput ribosome load data with multiplexed mRNA and protein abundance readouts, we mapped the cis-regulatory landscape of thousands of catechol-O-methyltransferase (COMT) variants from RNA to protein and found numerous coding variants that alter COMT expression. Finally, we trained machine learning models to map signatures of variant effects on COMT gene expression and uncovered both directional and divergent impacts across expression layers. Our analyses reveal expression phenotypes for thousands of variants in COMT and highlight variant effects on both single and multiple layers of expression. Our findings prompt future studies that integrate several multiplexed assays for the readout of gene expression.
多重变异效应分析是一种强大的方法,可用于研究稀有变异对基因表达和生物体适应性的影响。然而,很少有研究将几种多重分析方法整合起来,以研究编码序列中变异对基因表达的影响。在这里,我们开创了一种基于多核糖体分析的多重分析方法,大规模测量变异对翻译的影响,揭示了增加或减少核糖体负荷的单核苷酸变异。通过将高通量核糖体负荷数据与多重 mRNA 和蛋白质丰度读数相结合,我们绘制了数千个儿茶酚-O-甲基转移酶(COMT)变体从 RNA 到蛋白质的顺式调控景观,并发现了许多改变 COMT 表达的编码变体。最后,我们训练了机器学习模型来绘制 COMT 基因表达中变异效应的特征,并发现了表达层之间的定向和发散影响。我们的分析揭示了 COMT 中数千个变体的表达表型,并强调了变异对单个和多个表达层的影响。我们的研究结果促使未来的研究整合几种多重分析方法来进行基因表达的检测。