Phan Linda X, Owji Aaron P, Yang Tingting, Crain Jason, Sansom Mark S P, Tucker Stephen J
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
bioRxiv. 2024 Aug 8:2023.11.14.567055. doi: 10.1101/2023.11.14.567055.
Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl- channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable forcefield AMOEBA in MD simulations on different conformations of hBest1. This forcefield models multipole moments up to the quadrupole; therefore, it captures induced dipole and anion-π interactions. We show that key biophysical properties of the channel can only be simulated when electronic polarization is included in the molecular models and that Cl- permeation through the neck of the pore is achieved through hydrophobic solvation concomitant with partial ion dehydration. Furthermore, we demonstrate how such polarizable simulations can help determine the identity of ion-like densities within high-resolution cryo-EM structures and that neglecting polarization places Cl- at positions that do not correspond with their experimentally resolved location. Overall, our results demonstrate the importance of including electronic polarization in realistic and physically accurate models of biological systems, especially channels and pores that selectively permeate anions.
离子通道和纳米孔内阴离子渗透的机制仍知之甚少。最近人类贝斯特罗芬1型氯离子通道(hBest1)的冷冻电子显微镜结构提供了一个机会,可将分子动力学(MD)模拟预测的离子相互作用与实验观察结果进行比较。在这里,我们在hBest1不同构象的MD模拟中应用了完全可极化的AMOEBA力场。该力场对高达四极矩的多极矩进行建模;因此,它捕捉诱导偶极和阴离子-π相互作用。我们表明,只有当分子模型中包含电子极化时,才能模拟该通道的关键生物物理特性,并且氯离子通过孔颈部的渗透是通过疏水溶剂化伴随部分离子脱水实现的。此外,我们展示了这种可极化模拟如何有助于确定高分辨率冷冻电镜结构中类离子密度的身份,并且忽略极化会使氯离子处于与其实验解析位置不对应的位置。总体而言,我们的结果证明了在真实且物理准确的生物系统模型中纳入电子极化的重要性,特别是对于选择性渗透阴离子的通道和孔。