Suppr超能文献

基于MOCVD合成的铜石墨烯的用于灵敏检测多菌灵的阻抗传感平台。

Impedimetric sensing platform for sensitive carbendazim detection using MOCVD-synthesized copper graphene.

作者信息

Feroze Muhammad Tajmeel, Doonyapisut Dulyawat, Gudal Chandan Chandru, Kim Byeongkyu, Chung Chan-Hwa

机构信息

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

出版信息

Mikrochim Acta. 2023 Nov 28;190(12):489. doi: 10.1007/s00604-023-06060-y.

Abstract

Nanostructures of graphene were synthesized for electrochemical carbendazim (CBZ) fungicide detection via metal-organic chemical vapor deposition (MOCVD). The arduous process of graphene transfer is eliminated by this innovative approach to MOCVD graphene development. It also generates several defects and impurities and ultimately leads to the uniform deposition of graphene on SiO/Si. SEM, EDX, and ICP-AES were used to assess the morphological properties and chemical composition of the materials. To obtain in-depth knowledge of the entire system, the electrochemical behavior was also investigated using voltammetric techniques and electrochemical impedance spectroscopy. The interaction of particles of copper with CBZ and the enhanced surface area of graphene, which causes a strong oxidation current, has been demonstrated to achieve the ideal CBZ sensing behavior. The electrode responded linearly at CBZ concentration levels of 1 to 50 nM, and the sensitivity of the sensing materials was estimated to be 0.0337 Ω nM. The statistical analysis validates the electrode's exceptional selectivity and remarkable reproducibility in determining CBZ.

摘要

通过金属有机化学气相沉积(MOCVD)合成了用于电化学检测多菌灵(CBZ)杀菌剂的石墨烯纳米结构。这种创新的MOCVD石墨烯开发方法消除了石墨烯转移的艰巨过程。它还会产生一些缺陷和杂质,并最终导致石墨烯在SiO/Si上均匀沉积。使用扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)和电感耦合等离子体原子发射光谱(ICP - AES)来评估材料的形态特性和化学成分。为了深入了解整个系统,还使用伏安技术和电化学阻抗谱研究了电化学行为。已证明铜颗粒与CBZ的相互作用以及石墨烯增加的表面积会产生强烈的氧化电流,从而实现理想的CBZ传感行为。该电极在1至50 nM的CBZ浓度水平下呈线性响应,传感材料的灵敏度估计为0.0337 Ω nM。统计分析验证了该电极在测定CBZ时具有出色的选择性和显著的重现性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验