Tejwani Leon, Ravindra Neal G, Lee Changwoo, Cheng Yubao, Nguyen Billy, Luttik Kimberly, Ni Luhan, Zhang Shupei, Morrison Logan M, Gionco John, Xiang Yangfei, Yoon Jennifer, Ro Hannah, Haidery Fatema, Grijalva Rosalie M, Bae Eunwoo, Kim Kristen, Martuscello Regina T, Orr Harry T, Zoghbi Huda Y, McLoughlin Hayley S, Ranum Laura P W, Shakkottai Vikram G, Faust Phyllis L, Wang Siyuan, van Dijk David, Lim Janghoo
Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA.
Neuron. 2024 Feb 7;112(3):362-383.e15. doi: 10.1016/j.neuron.2023.10.039. Epub 2023 Nov 27.
Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.
神经退行性变是一个漫长的过程,涉及多种细胞类型的渐进性变化,最终导致易损神经元群体的死亡。为了剖析异质性组织中的单个细胞类型如何导致神经退行性疾病的发病机制和进展,我们对小鼠和人类1型脊髓小脑共济失调(SCA1)小脑组织进行了纵向单核RNA测序,建立了每个细胞群体的连续动态轨迹。重要的是,我们定义了浦肯野细胞丢失之前的精确转录变化,并首次在单极刷状细胞和少突胶质细胞中发现了强烈的早期转录失调。最后,我们应用深度学习方法准确预测疾病状态,并确定了能够准确区分野生型和SCA1细胞的特定特征。总之,这项工作揭示了不同小脑细胞类型在SCA1中的新作用,并为研究神经退行性变提供了一个可推广的分析框架。