Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
Chromosome Res. 2023 Nov 29;31(4):34. doi: 10.1007/s10577-023-09744-6.
Eukaryotes have varying numbers and structures of characteristic chromosomes across lineages or species. The evolutionary trajectory of species may have been affected by spontaneous genome rearrangements. Chromosome fusion drastically alters karyotypes. However, the mechanisms and consequences of chromosome fusions, particularly in muntjac species, are poorly understood. Recent research-based advancements in three-dimensional (3D) genomics, particularly high-throughput chromatin conformation capture (Hi-C) sequencing, have allowed for the identification of chromosome fusions and provided mechanistic insights into three muntjac species: Muntiacus muntjak, M. reevesi, and M. crinifrons. This study aimed to uncover potential genome rearrangement patterns in the threatened species Fea's muntjac (Muntiacus feae), which have not been previously examined for such characteristics. Deep Hi-C sequencing (31.42 × coverage) was performed to reveal the 3D chromatin architecture of the Fea's muntjac genome. Patterns of repeated chromosome fusions that were potentially mediated by high-abundance transposable elements were identified. Comparative Hi-C maps demonstrated linkage homology between the sex chromosomes in Fea's muntjac and autosomes in M. reevesi, indicating that fusions may have played a crucial role in the evolution of the sex chromosomes of the lineage. The species-level dynamics of topologically associated domains (TADs) suggest that TAD organization could be altered by differential chromosome interactions owing to repeated chromosome fusions. However, research on the effect of TADs on muntjac genome evolution is insufficient. This study generated Hi-C data for the Fea's muntjac, providing a genomic resource for future investigations of the evolutionary patterns of chromatin conformation at the chromosomal level.
真核生物在不同的谱系或物种中具有不同数量和结构的特征染色体。物种的进化轨迹可能受到自发基因组重排的影响。染色体融合会极大地改变核型。然而,染色体融合的机制和后果,特别是在麂属物种中,仍知之甚少。基于最近的三维(3D)基因组学的研究进展,特别是高通量染色质构象捕获(Hi-C)测序,已经能够识别染色体融合,并为三种麂属物种(Muntiacus muntjak、M. reevesi 和 M. crinifrons)提供了对其机制的深入了解。本研究旨在揭示受威胁物种菲氏麂(Muntiacus feae)中的潜在基因组重排模式,此前尚未对这些特征进行研究。进行了深度 Hi-C 测序(31.42×覆盖度)以揭示菲氏麂基因组的 3D 染色质结构。鉴定出可能由高丰度转座元件介导的重复染色体融合模式。比较 Hi-C 图谱表明,菲氏麂的性染色体与 M. reevesi 的常染色体之间存在着连锁同源性,这表明融合可能在该谱系的性染色体进化中发挥了关键作用。拓扑关联域(TAD)的种间动态表明,由于重复染色体融合,TAD 组织可能会因染色体之间的相互作用而发生改变。然而,关于 TAD 对麂属基因组进化影响的研究还不够充分。本研究为菲氏麂生成了 Hi-C 数据,为未来在染色体水平上研究染色质构象的进化模式提供了基因组资源。