Suppr超能文献

应用异方差有序概率模型提高年龄和性别估计的损伤严重程度。

Applying the heteroskedastic ordered probit model on injury severity for improved age and gender estimation.

机构信息

Department of Transportation & Urban Infrastructure Studies, Morgan State University, Baltimore, Maryland.

Department of Systems Engineering, Colorado State University, Colorado State University, Fort Collins, Colorado.

出版信息

Traffic Inj Prev. 2024;25(2):202-209. doi: 10.1080/15389588.2023.2286429. Epub 2024 Jan 2.

Abstract

OBJECTIVE

Driver characteristics have been linked to the frequency and severity of car crashes. Among these, age and gender have been shown to impact both the possibility and severity of a crash. Previous studies have used standard ordered probit (OP) models to analyze crash data, and some research has suggested heteroskedastic ordered probit (HETOP) could provide improved model fit. The objective of this paper is to evaluate potential improvements of the heteroskedastic ordered probit (HETOP) model compared to the standard ordered probit (OP) model in crash analysis, by examining the effect of gender across age on injury severity among drivers. This paper hypothesizes that the HETOP model can provide a better fit to crash data, by allowing heteroskedasticity in the distribution of injury severity across driver age and gender.

METHODS

Data for 20,222 crashes were analyzed for North Carolina from 2016 to 2018, which represents the state with the highest number of fatalities per 100 million vehicle miles traveled amongst available crash data from the Highway Safety Information System.

RESULTS

Darker lighting conditions, severe road surface conditions, and less severe weather were associated with increased injury severity. For driver demographics, the probability of severe injuries increased with age and for male drivers. Moreover, the variance of severity increased with age disproportionately within and across genders, and the HETOP was able to account for this.

CONCLUSIONS

The results of the two applied approaches revealed that HETOP model outperformed the standard OP model when measuring the effects of age and gender together in injury severity analysis, due to the heteroskedasticity in injury severity within gender and age. The HETOP statistical method presented in this paper can be more broadly applied across other contexts and combinations of independent variables for improved model prediction and accuracy of causal variables in traffic safety.

摘要

目的

驾驶员特征与车祸频率和严重程度有关。其中,年龄和性别已被证明会影响事故发生的可能性和严重程度。先前的研究使用标准有序概率(OP)模型分析了车祸数据,一些研究表明异方差有序概率(HETOP)可以提供更好的模型拟合。本文的目的是通过研究年龄对驾驶员受伤严重程度的性别影响,评估异方差有序概率(HETOP)模型相对于标准有序概率(OP)模型在车祸分析中的潜在改进。本文假设 HETOP 模型可以通过允许损伤严重程度在驾驶员年龄和性别之间的分布中存在异方差性,为车祸数据提供更好的拟合。

方法

对北卡罗来纳州 2016 年至 2018 年的 20222 起车祸进行了数据分析,这是公路安全信息系统中可用车祸数据中每 1 亿车英里死亡率最高的州。

结果

较暗的照明条件、严重的路面状况和较不严重的天气与受伤严重程度增加有关。对于驾驶员人口统计学,受伤严重程度的概率随着年龄和男性司机的增加而增加。此外,严重程度的方差在性别内和性别间不成比例地增加,HETOP 能够解释这一点。

结论

两种应用方法的结果表明,HETOP 模型在衡量年龄和性别对受伤严重程度的综合影响时,优于标准 OP 模型,因为性别和年龄内的损伤严重程度存在异方差性。本文提出的 HETOP 统计方法可以更广泛地应用于其他上下文和独立变量组合中,以提高模型预测和交通安全中因果变量的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验