Suppr超能文献

部分模块化社区中信仰的传播。

The Spread of Beliefs in Partially Modularized Communities.

机构信息

Department of Psychological and Brain Sciences, Indiana University.

Program in Cognitive Science, Indiana University.

出版信息

Perspect Psychol Sci. 2024 Mar;19(2):404-417. doi: 10.1177/17456916231198238. Epub 2023 Nov 29.

Abstract

Many life-influencing social networks are characterized by considerable informational isolation. People within a community are far more likely to share beliefs than people who are part of different communities. The spread of useful information across communities is impeded by echo chambers (far greater connectivity within than between communities) and filter bubbles (more influence of beliefs by connected neighbors within than between communities). We apply the tools of network analysis to organize our understanding of the spread of beliefs across modularized communities and to predict the effect of individual and group parameters on the dynamics and distribution of beliefs. In our Spread of Beliefs in Modularized Communities (SBMC) framework, a stochastic block model generates social networks with variable degrees of modularity, beliefs have different observable utilities, individuals change their beliefs on the basis of summed or average evidence (or intermediate decision rules), and parameterized stochasticity introduces randomness into decisions. SBMC simulations show surprising patterns; for example, increasing out-group connectivity does not always improve group performance, adding randomness to decisions can promote performance, and decision rules that sum rather than average evidence can improve group performance, as measured by the average utility of beliefs that the agents adopt. Overall, the results suggest that intermediate degrees of belief exploration are beneficial for the spread of useful beliefs in a community, and so parameters that pull in opposite directions on an explore-exploit continuum are usefully paired.

摘要

许多影响生活的社交网络的特点是相当程度的信息隔离。一个社区内的人比不同社区的人更有可能分享信仰。有用信息在社区之间的传播受到回音室(社区内的连接性远远大于社区之间的连接性)和过滤气泡(社区内的连接邻居对信仰的影响大于社区之间的影响)的阻碍。我们应用网络分析工具来组织我们对信仰在模块化社区中传播的理解,并预测个体和群体参数对信仰动态和分布的影响。在我们的模块化社区信仰传播(SBMC)框架中,随机块模型生成具有可变模块度的社交网络,信念具有不同的可观察效用,个体根据总和或平均证据(或中间决策规则)改变信念,参数化随机性为决策引入随机性。SBMC 模拟显示出令人惊讶的模式;例如,增加外群体连接性并不总是能提高群体绩效,在决策中引入随机性可以提高绩效,并且与平均证据相比,求和而不是平均证据的决策规则可以提高群体绩效,这可以通过代理人采用的信念的平均效用来衡量。总的来说,结果表明,在社区中,适度的信念探索对有用信念的传播是有益的,因此在探索-利用连续体上向相反方向拉动的参数是有用的配对。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验