Suppr超能文献

智能纳米通道中的离子传输:电场作用的比较分析

Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field.

作者信息

Khatibi Mahdi, Ashrafizadeh Seyed Nezameddin

机构信息

Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.

出版信息

Anal Chem. 2023 Dec 12;95(49):18188-18198. doi: 10.1021/acs.analchem.3c03809. Epub 2023 Nov 29.

Abstract

This research delves into investigating ion transport behavior within nanochannels, enhanced through modification with a negatively charged polyelectrolyte layer (PEL), aimed at achieving superior control. The study examines two types of electric fields─direct current and alternating current with square, sinusoidal, triangular, and sawtooth waveforms─to understand their impact on ion transport. Furthermore, the study compares symmetric (cylindrical) and asymmetric (conical) nanochannel geometries to assess the influence of overlapping electrical double layers (EDLs) in generating specific electrokinetic behaviors such as ionic current rectification (ICR) and ion selectivity. The research employs the finite element method to solve the coupled Poisson-Nernst-Planck and Navier-Stokes equations under unsteady-state conditions. By considering factors such as electrolyte concentration, soft layer charge density, and electric field type, the study evaluates ion transport performance in charged nanochannels, investigating effects on concentration polarization, electroosmotic flow (EOF), ion current, rectification, and ion selectivity. Notably, the study accounts for ion partitioning between the PEL and electrolyte to simulate real conditions. Findings reveal that conical nanochannels, due to improved EDL overlap, significantly enhance ion transport and related characteristics compared to cylindrical ones. For instance, under η = η = 0.8, η = 2, = 20 mM, and / = 80 mol m conditions, the average EOF for conical and cylindrical geometries is 0.1 and 0.008 m/s, respectively. Additionally, the study explores ion selectivity and rectification based on the electric field type, unveiling the potential of nanochannels as ion gates or diodes. In cylindrical nanochannels, the ICR remains at unity, with lower ion selectivity across waveforms compared to conical channels. Furthermore, rectification and ion selectivity trends are identified as > > > > and > > > > for conical nanochannels. Our study of ion transport control in nanochannels, guided by tailored electric fields and unique geometries, offers versatile applications in the field of Analytical Chemistry. This includes enhanced sample separation, controlled drug delivery, optimized pharmaceutical analysis, and the development of advanced biosensing technologies for precise chemical analysis and detection. These applications highlight the diverse analytical contributions of our methodology, providing innovative solutions to challenges in chemical analysis and biosensing.

摘要

本研究深入探究了纳米通道内的离子传输行为,通过用带负电荷的聚电解质层(PEL)进行修饰来增强这种行为,旨在实现更好的控制。该研究考察了两种类型的电场——直流电和具有方波、正弦波、三角波和锯齿波波形的交流电——以了解它们对离子传输的影响。此外,该研究比较了对称(圆柱形)和不对称(锥形)纳米通道几何形状,以评估重叠电双层(EDL)在产生特定电动行为(如离子电流整流(ICR)和离子选择性)方面的影响。该研究采用有限元方法在非稳态条件下求解耦合的泊松 - 能斯特 - 普朗克方程和纳维 - 斯托克斯方程。通过考虑电解质浓度、软层电荷密度和电场类型等因素,该研究评估了带电纳米通道中的离子传输性能,研究了对浓度极化、电渗流(EOF)、离子电流、整流和离子选择性的影响。值得注意的是,该研究考虑了PEL和电解质之间的离子分配以模拟实际情况。研究结果表明,由于EDL重叠得到改善,锥形纳米通道与圆柱形纳米通道相比,显著增强了离子传输及相关特性。例如,在η = η = 0.8、η = 2、 = 20 mM和/ = 80 mol m条件下,锥形和圆柱形几何形状的平均EOF分别为0.1和0.008 m/s。此外,该研究基于电场类型探索了离子选择性和整流,揭示了纳米通道作为离子门或二极管的潜力。在圆柱形纳米通道中,ICR保持为1,与锥形通道相比,不同波形下的离子选择性较低。此外,对于锥形纳米通道,整流和离子选择性趋势被确定为 > > > > 和 > > > > 。我们在定制电场和独特几何形状的指导下对纳米通道中离子传输控制的研究,在分析化学领域提供了广泛的应用。这包括增强样品分离、控制药物递送、优化药物分析以及开发用于精确化学分析和检测的先进生物传感技术。这些应用突出了我们方法在分析方面的多样贡献,为化学分析和生物传感中的挑战提供了创新解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验