Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-000, Finland.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2310752120. doi: 10.1073/pnas.2310752120. Epub 2023 Nov 29.
The mechanisms generating novel genes and genetic information are poorly known, even for microRNA (miRNA) genes with an extremely constrained design. All miRNA primary transcripts need to fold into a stem-loop structure to yield short gene products ([Formula: see text]22 nt) that bind and repress their mRNA targets. While a substantial number of miRNA genes are ancient and highly conserved, short secondary structures coding for entirely novel miRNA genes have been shown to emerge in a lineage-specific manner. Template switching is a DNA-replication-related mutation mechanism that can introduce complex changes and generate perfect base pairing for entire hairpin structures in a single event. Here, we show that the template-switching mutations (TSMs) have participated in the emergence of over 6,000 suitable hairpin structures in the primate lineage to yield at least 18 new human miRNA genes, that is 26% of the miRNAs inferred to have arisen since the origin of primates. While the mechanism appears random, the TSM-generated miRNAs are enriched in introns where they can be expressed with their host genes. The high frequency of TSM events provides raw material for evolution. Being orders of magnitude faster than other mechanisms proposed for de novo creation of genes, TSM-generated miRNAs enable near-instant rewiring of genetic information and rapid adaptation to changing environments.
新基因和遗传信息产生的机制知之甚少,即使对于 miRNA(miRNA)基因这种设计受到严格限制的基因也是如此。所有 miRNA 初级转录本都需要折叠成茎环结构,从而产生短的基因产物([公式:见正文]22 个核苷酸),这些产物可以结合并抑制其 mRNA 靶标。虽然大量 miRNA 基因是古老且高度保守的,但已经证明,编码全新 miRNA 基因的短二级结构以谱系特异性的方式出现。模板转换是一种与 DNA 复制相关的突变机制,它可以在单个事件中引入复杂的变化,并为整个发夹结构生成完美的碱基配对。在这里,我们表明,模板转换突变(TSM)参与了灵长类动物谱系中超过 6000 个合适的发夹结构的出现,从而产生了至少 18 个新的人类 miRNA 基因,占推断自灵长类动物起源以来出现的 miRNA 的 26%。虽然该机制似乎是随机的,但 TSM 产生的 miRNA 富含内含子,它们可以与宿主基因一起表达。TSM 事件的高频率为进化提供了原材料。与其他被提议用于新基因从头创建的机制相比,TSM 产生的 miRNA 速度快几个数量级,它能够快速重新布线遗传信息并快速适应不断变化的环境。