Suppr超能文献

纳米颗粒增强2-氨基-2-甲基-1-丙醇水溶液捕获CO的实验研究

Experimental study of CO capture by nanoparticle-enhanced 2-amino-2-methyl-1-propanol aqueous solution.

作者信息

Zhang Qiuli, Ning Zhongyi, Li Xuelian, Ning Xiaogang, Wu Fan, Zhou Jun

机构信息

School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China

Shaanxi Beiyuan Chemical Industry Group Co., Ltd, Jinjie Industrial Park Shenmu 719319 Shaanxi China.

出版信息

RSC Adv. 2023 Nov 16;13(48):33644-33653. doi: 10.1039/d3ra06767j.

Abstract

2-Amino-2-methyl-1-propanol (AMP) is often used as a moderator to enhance the CO capture capacity of absorbents due to its unique spatial site resistance structure, and relatively few studies have been conducted on the enhancement of AMP aqueous solutions by nanoparticles for CO capture. In order to investigate the effect of nanoparticles on the CO capture performance of AMP aqueous solution, different nanofluids were formulated in this paper using a two-step method, and a bubbling reactor and an oil bath were used as the experimental setup for absorption/desorption, and through comparative experiments, it was found that the type of nanoparticles, the solid content, and the different parameters have great influences on the CO absorption load and desorption rate. The experimental results show that the addition of TiO nanoparticles to the AMP base solution can accelerate the absorption-desorption mass transfer rate of CO, and there exists an optimal solid content of 1 g L (±1.0%, ±2.5%); after multiple absorption-desorption experiments, good cycling performance can still be achieved. The experimental results of the nanofluid-promoted mass transfer mechanism are also illustrated and analyzed in this paper.

摘要

2-氨基-2-甲基-1-丙醇(AMP)因其独特的空间位阻结构,常被用作调节剂以提高吸收剂对CO的捕集能力,而关于纳米颗粒增强AMP水溶液用于CO捕集的研究相对较少。为了研究纳米颗粒对AMP水溶液CO捕集性能的影响,本文采用两步法配制了不同的纳米流体,并使用鼓泡反应器和油浴作为吸收/解吸的实验装置,通过对比实验发现,纳米颗粒的种类、固含量以及不同参数对CO吸收负荷和解吸速率有很大影响。实验结果表明,向AMP基础溶液中添加TiO纳米颗粒可加速CO的吸收-解吸传质速率,存在1 g/L(±1.0%,±2.5%)的最佳固含量;经过多次吸收-解吸实验后,仍可实现良好的循环性能。本文还对纳米流体促进传质机理的实验结果进行了说明和分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e171/10652185/57bd6afce39f/d3ra06767j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验