文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

运用机器学习算法构建肾移植后间质纤维化和肾小管萎缩的预测模型。

Construction of predictive model of interstitial fibrosis and tubular atrophy after kidney transplantation with machine learning algorithms.

作者信息

Yin Yu, Chen Congcong, Zhang Dong, Han Qianguang, Wang Zijie, Huang Zhengkai, Chen Hao, Sun Li, Fei Shuang, Tao Jun, Han Zhijian, Tan Ruoyun, Gu Min, Ju Xiaobing

机构信息

Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Front Genet. 2023 Nov 1;14:1276963. doi: 10.3389/fgene.2023.1276963. eCollection 2023.


DOI:10.3389/fgene.2023.1276963
PMID:38028591
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10646529/
Abstract

Interstitial fibrosis and tubular atrophy (IFTA) are the histopathological manifestations of chronic kidney disease (CKD) and one of the causes of long-term renal loss in transplanted kidneys. Necroptosis as a type of programmed death plays an important role in the development of IFTA, and in the late functional decline and even loss of grafts. In this study, 13 machine learning algorithms were used to construct IFTA diagnostic models based on necroptosis-related genes. We screened all 162 "kidney transplant"-related cohorts in the GEO database and obtained five data sets (training sets: GSE98320 and GSE76882, validation sets: GSE22459 and GSE53605, and survival set: GSE21374). The training set was constructed after removing batch effects of GSE98320 and GSE76882 by using the SVA package. The differentially expressed gene (DEG) analysis was used to identify necroptosis-related DEGs. A total of 13 machine learning algorithms-LASSO, Ridge, Enet, Stepglm, SVM, glmboost, LDA, plsRglm, random forest, GBM, XGBoost, Naive Bayes, and ANNs-were used to construct 114 IFTA diagnostic models, and the optimal models were screened by the AUC values. Post-transplantation patients were then grouped using consensus clustering, and the different subgroups were further explored using PCA, Kaplan-Meier (KM) survival analysis, functional enrichment analysis, CIBERSOFT, and single-sample Gene Set Enrichment Analysis. A total of 55 necroptosis-related DEGs were identified by taking the intersection of the DEGs and necroptosis-related gene sets. Stepglm[both]+RF is the optimal model with an average AUC of 0.822. A total of four molecular subgroups of renal transplantation patients were obtained by clustering, and significant upregulation of fibrosis-related pathways and upregulation of immune response-related pathways were found in the C4 group, which had poor prognosis. Based on the combination of the 13 machine learning algorithms, we developed 114 IFTA classification models. Furthermore, we tested the top model using two independent data sets from GEO.

摘要

间质纤维化和肾小管萎缩(IFTA)是慢性肾脏病(CKD)的组织病理学表现,也是移植肾长期肾功能丧失的原因之一。坏死性凋亡作为一种程序性死亡,在IFTA的发生发展以及移植肾后期功能衰退甚至丧失中起重要作用。在本研究中,使用13种机器学习算法基于坏死性凋亡相关基因构建IFTA诊断模型。我们在基因表达综合数据库(GEO)中筛选了所有162个与“肾移植”相关的队列,并获得了五个数据集(训练集:GSE98320和GSE76882,验证集:GSE22459和GSE53605,以及生存集:GSE21374)。通过使用SVA软件包去除GSE98320和GSE76882的批次效应后构建训练集。采用差异表达基因(DEG)分析来鉴定坏死性凋亡相关的差异表达基因。总共使用13种机器学习算法——套索回归(LASSO)、岭回归(Ridge)、弹性网络(Enet)、逐步广义线性模型(Stepglm)、支持向量机(SVM)、广义线性模型增强(glmboost)、线性判别分析(LDA)、偏最小二乘回归广义线性模型(plsRglm)、随机森林(random forest)、梯度提升机(GBM)、极端梯度提升(XGBoost)、朴素贝叶斯(Naive Bayes)和人工神经网络(ANNs)——构建了114个IFTA诊断模型,并通过曲线下面积(AUC)值筛选出最佳模型。然后使用一致性聚类对移植后患者进行分组,并使用主成分分析(PCA)、卡普兰 - 迈耶(KM)生存分析、功能富集分析、CIBERSOFT和单样本基因集富集分析进一步探索不同亚组。通过取差异表达基因与坏死性凋亡相关基因集的交集,共鉴定出55个坏死性凋亡相关的差异表达基因。Stepglm[两者] + 随机森林(RF)是最佳模型,平均AUC为0.822。通过聚类获得了总共四个肾移植患者的分子亚组,发现预后较差的C4组中纤维化相关通路显著上调以及免疫反应相关通路上调。基于这13种机器学习算法的组合,我们开发了114个IFTA分类模型。此外,我们使用来自GEO的两个独立数据集对顶级模型进行了测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/7ff46278f2f8/fgene-14-1276963-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/92d41b1758e6/fgene-14-1276963-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/2d499ef85dcc/fgene-14-1276963-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/07ea6bbaf68d/fgene-14-1276963-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/c1cfefb83f89/fgene-14-1276963-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/7ff46278f2f8/fgene-14-1276963-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/92d41b1758e6/fgene-14-1276963-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/2d499ef85dcc/fgene-14-1276963-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/07ea6bbaf68d/fgene-14-1276963-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/c1cfefb83f89/fgene-14-1276963-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720e/10646529/7ff46278f2f8/fgene-14-1276963-g005.jpg

相似文献

[1]
Construction of predictive model of interstitial fibrosis and tubular atrophy after kidney transplantation with machine learning algorithms.

Front Genet. 2023-11-1

[2]
Machine learning-based integrated identification of predictive combined diagnostic biomarkers for endometriosis.

Front Genet. 2023-11-27

[3]
The Potential Diagnostic Value of Immune-Related Genes in Interstitial Fibrosis and Tubular Atrophy after Kidney Transplantation.

J Immunol Res. 2022

[4]
Profiling of mRNA of interstitial fibrosis and tubular atrophy with subclinical inflammation in recipients after kidney transplantation.

Aging (Albany NY). 2019-7-25

[5]
Development and Validation of a Deep Learning Model to Quantify Interstitial Fibrosis and Tubular Atrophy From Kidney Ultrasonography Images.

JAMA Netw Open. 2021-5-3

[6]
Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells.

Front Immunol. 2023

[7]
Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis.

Sci Rep. 2023-10-2

[8]
Diagnostic accuracy of ultrasound-based multimodal radiomics modeling for fibrosis detection in chronic kidney disease.

Eur Radiol. 2023-4

[9]
Predicting kidney outcomes among Latin American patients with lupus nephritis: The prognostic value of interstitial fibrosis and tubular atrophy and tubulointerstitial inflammation.

Lupus. 2023-3

[10]
Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long-Term Outcomes.

Am J Transplant. 2016-7

引用本文的文献

[1]
Identification of M2 macrophage-related biomarkers for a predictive model of interstitial fibrosis and tubular atrophy after kidney transplantation by machine learning algorithms.

Transl Androl Urol. 2025-7-30

[2]
Identifying a gene signature for age-related hearing loss through machine learning and revealing the effect of the CTSS on the mice cochlea.

Biogerontology. 2025-6-3

[3]
Diverse regulated cell death patterns and immune traits in kidney allograft with fibrosis: a prediction of renal allograft failure based on machine learning, single-nucleus RNA sequencing and molecular docking.

Ren Fail. 2024-12

本文引用的文献

[1]
Construction of artificial neural network diagnostic model and analysis of immune infiltration for periodontitis.

Front Genet. 2022-11-15

[2]
A randomized controlled trial to evaluate efficacy and safety of early conversion to a low-dose calcineurin inhibitor combined with sirolimus in renal transplant patients.

Chin Med J (Engl). 2022-7-25

[3]
Establishment and Analysis of a Combined Diagnostic Model of Alzheimer's Disease With Random Forest and Artificial Neural Network.

Front Aging Neurosci. 2022-6-30

[4]
The Potential Diagnostic Value of Immune-Related Genes in Interstitial Fibrosis and Tubular Atrophy after Kidney Transplantation.

J Immunol Res. 2022

[5]
Construction of Novel Gene Signature-Based Predictive Model for the Diagnosis of Acute Myocardial Infarction by Combining Random Forest With Artificial Neural Network.

Front Cardiovasc Med. 2022-5-25

[6]
Immune-Related Genes for Predicting Future Kidney Graft Loss: A Study Based on GEO Database.

Front Immunol. 2022

[7]
Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss.

J Am Soc Nephrol. 2022-3

[8]
Efficacy and safety of conventional antiviral agents in preventive strategies for cytomegalovirus infection after kidney transplantation: a systematic review and network meta-analysis.

Transpl Int. 2021-12

[9]
Integrated Analysis of Prognostic Genes Associated With Ischemia-Reperfusion Injury in Renal Transplantation.

Front Immunol. 2021

[10]
Tackling Chronic Kidney Transplant Rejection: Challenges and Promises.

Front Immunol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索