Suppr超能文献

预测非小细胞肺癌免疫治疗反应——从实验室到临床

Predicting response to immunotherapy in non-small cell lung cancer- from bench to bedside.

作者信息

Montoya Chris, Spieler Benjamin, Welford Scott M, Kwon Deukwoo, Pra Alan Dal, Lopes Gilberto, Mihaylov Ivaylo B

机构信息

Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States.

Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, United States.

出版信息

Front Oncol. 2023 Nov 15;13:1225720. doi: 10.3389/fonc.2023.1225720. eCollection 2023.

Abstract

BACKGROUND

Immune checkpoint inhibitor (ICI) therapy is first-line treatment for many advanced non-small cell lung cancer (aNSCLC) patients. Predicting response could help guide selection of intensified or alternative anti-cancer regimens. We hypothesized that radiomics and laboratory variables predictive of ICI response in a murine model would also predict response in aNSCLC patients.

METHODS

Fifteen mice with lung carcinoma tumors implanted in bilateral flanks received ICI. Pre-ICI laboratory and computed tomography (CT) data were evaluated for association with systemic ICI response. Baseline clinical and CT data for 117 aNSCLC patients treated with nivolumab were correlated with overall survival (OS). Models for predicting treatment response were created and subjected to internal cross-validation, with the human model further tested on 42 aNSCLC patients who received pembrolizumab.

RESULTS

Models incorporating baseline NLR and identical radiomics (surface-to-mass ratio, average Gray, and 2D kurtosis) predicted ICI response in mice and OS in humans with AUCs of 0.91 and 0.75, respectively. The human model successfully sorted pembrolizumab patients by longer vs. shorter predicted OS (median 35 months vs. 6 months, p=0.026 by log-rank).

DISCUSSION

This study advances precision oncology by non-invasively classifying aNSCLC patients according to ICI response using pre-treatment data only. Interestingly, identical radiomics features and NLR correlated with outcomes in the preclinical study and with ICI response in 2 independent patient cohorts, suggesting translatability of the findings. Future directions include using a radiogenomic approach to optimize modeling of ICI response.

摘要

背景

免疫检查点抑制剂(ICI)疗法是许多晚期非小细胞肺癌(aNSCLC)患者的一线治疗方法。预测反应有助于指导强化或替代抗癌方案的选择。我们假设,在小鼠模型中预测ICI反应的放射组学和实验室变量也能预测aNSCLC患者的反应。

方法

15只双侧胁腹植入肺癌肿瘤的小鼠接受ICI治疗。评估ICI治疗前的实验室和计算机断层扫描(CT)数据与全身ICI反应的相关性。117例接受纳武单抗治疗的aNSCLC患者的基线临床和CT数据与总生存期(OS)相关。建立预测治疗反应的模型并进行内部交叉验证,该人类模型在42例接受派姆单抗治疗的aNSCLC患者中进一步测试。

结果

纳入基线中性粒细胞与淋巴细胞比值(NLR)和相同放射组学特征(表面积与质量比、平均灰度和二维峰度)的模型分别预测小鼠的ICI反应和人类的OS,曲线下面积(AUC)分别为0.91和0.75。人类模型成功地根据预测的OS长短对派姆单抗治疗的患者进行了分类(中位生存期分别为35个月和6个月,对数秩检验p=0.026)。

讨论

本研究仅使用治疗前数据,通过对aNSCLC患者的ICI反应进行非侵入性分类,推动了精准肿瘤学的发展。有趣的是,相同的放射组学特征和NLR在临床前研究中与结果相关,在2个独立的患者队列中与ICI反应相关,表明研究结果具有可转化性。未来的方向包括使用放射基因组学方法优化ICI反应的建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aa8/10686412/5559442fba62/fonc-13-1225720-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验