变革癌症护理:关于利用人工智能推进服务不足社区免疫治疗的叙述性综述。

Transforming Cancer Care: A Narrative Review on Leveraging Artificial Intelligence to Advance Immunotherapy in Underserved Communities.

作者信息

Vasquez Victor M, McCabe Molly, McKee Jack C, Siby Sharon, Hussain Usman, Faizuddin Farah, Sheikh Aadil, Nguyen Thien, Mayer Ghislaine, Grier Jennifer, Dhandayuthapani Subramanian, Gadad Shrikanth S, Chacon Jessica

机构信息

Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.

School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA.

出版信息

J Clin Med. 2025 Jul 29;14(15):5346. doi: 10.3390/jcm14155346.

Abstract

: Cancer immunotherapy has transformed oncology, but underserved populations face persistent disparities in access and outcomes. This review explores how artificial intelligence (AI) can help mitigate these barriers. : We conducted a narrative review based on peer-reviewed literature selected for relevance to artificial intelligence, cancer immunotherapy, and healthcare challenges, without restrictions on publication date. We searched three major electronic databases: PubMed, IEEE Xplore, and arXiv, covering both biomedical and computational literature. The search included publications from January 2015 through April 2024 to capture contemporary developments in AI and cancer immunotherapy. : AI tools such as machine learning, natural language processing, and predictive analytics can enhance early detection, personalize treatment, and improve clinical trial representation for historically underrepresented populations. Additionally, AI-driven solutions can aid in managing side effects, expanding telehealth, and addressing social determinants of health (SDOH). However, algorithmic bias, privacy concerns, and data diversity remain major challenges. : With intentional design and implementation, AI holds the potential to reduce disparities in cancer immunotherapy and promote more inclusive oncology care. Future efforts must focus on ethical deployment, inclusive data collection, and interdisciplinary collaboration.

摘要

癌症免疫疗法已经改变了肿瘤学,但服务不足的人群在获得治疗和治疗结果方面仍然面临持续的差距。本综述探讨了人工智能(AI)如何有助于减轻这些障碍。

我们基于与人工智能、癌症免疫疗法和医疗保健挑战相关的同行评审文献进行了叙述性综述,对出版日期没有限制。我们搜索了三个主要的电子数据库:PubMed、IEEE Xplore和arXiv,涵盖生物医学和计算文献。搜索范围包括2015年1月至2024年4月的出版物,以捕捉人工智能和癌症免疫疗法的当代发展。

机器学习、自然语言处理和预测分析等人工智能工具可以加强早期检测、实现个性化治疗,并改善历史上代表性不足人群在临床试验中的代表性。此外,人工智能驱动的解决方案可以帮助管理副作用、扩大远程医疗,并解决健康的社会决定因素(SDOH)。然而,算法偏见、隐私问题和数据多样性仍然是主要挑战。

通过有意的设计和实施,人工智能有潜力减少癌症免疫疗法中的差距,并促进更具包容性的肿瘤学护理。未来的努力必须集中在道德部署、包容性数据收集和跨学科合作上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/873b/12347673/48450ec5df9d/jcm-14-05346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索