Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, USA.
J Physiol. 2024 Feb;602(3):445-459. doi: 10.1113/JP285650. Epub 2023 Dec 4.
Maximal oxygen (O ) uptake ( ) is an important parameter with utility in health and disease. However, the relative importance of O transport and utilization capacities in limiting muscle before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscle pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venous (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation ( H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellular using an O half-saturation pressure of 3.2 mmHg. Pre-training muscle was not significantly different across inspired O conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min , all q > 0.174), despite significantly greater muscle mean capillary-intracellular gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscle was significantly different across all inspired O conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellular gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle in normoxia from the mitochondrial capacity to utilize O to the capacity to transport O to the mitochondria. KEY POINTS: Maximal O uptake is an important parameter with utility in health and disease. The relative importance of O transport and utilization capacities in limiting muscle maximal O uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O uptake with the measurement of muscle intracellular before and after 8 weeks of endurance exercise training. We show that increasing O availability did not increase muscle maximal O uptake before training, whereas increasing O availability did increase muscle maximal O uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O uptake in normoxia from the mitochondrial capacity to utilize O to the capacity to transport O to the mitochondria.
最大摄氧量(VO2max)是健康和疾病中具有应用价值的一个重要参数。然而,在耐力运动训练前后,氧运输和利用能力对限制肌肉摄氧量的相对重要性尚不清楚。因此,本研究旨在确定最初久坐的参与者在耐力运动训练前后肌肉摄氧量的限制机制。在五名最初久坐的年轻男性中,在进行最大单腿伸膝运动(KE)时,通过桡动脉和股静脉(血液样本)、腿部血流(热稀释法)和肌红蛋白(Mb)去饱和度( H 磁共振波谱)来测量摄氧量,同时分别在运动前和运动后 8 周的 KE 训练(1 小时,每周 3 次)中,分别呼吸 12%、21%或 100%的 O2。通过将 O2 半饱和压力设为 3.2mmHg 将 Mb 去饱和度转换为细胞内 O2。尽管在常氧(34±3mmHg)和高氧(40±7mmHg)条件下肌肉毛细血管-细胞内的平均梯度明显大于低氧(29±5mmHg,两者均 q<0.024),但运动前肌肉摄氧量在不同吸入氧条件下没有显著差异(12%:0.47±0.10;21%:0.52±0.13;100%:0.54±0.01Lmin,所有 q>0.174)。运动后,所有吸入氧条件下的肌肉摄氧量均有显著差异(12%:0.59±0.11;21%:0.68±0.11;100%:0.76±0.09mmHg,所有 q<0.035),肌肉毛细血管-细胞内的平均梯度也有显著差异(12%:32±2mmHg;21%:37±2mmHg;100%:45±7mmHg,所有 q<0.029)。在这些最初久坐的参与者中,耐力运动训练改变了常氧下肌肉摄氧量限制的基础,从利用氧的线粒体能力转变为向线粒体运输氧的能力。关键点:最大摄氧量(VO2max)是健康和疾病中具有应用价值的一个重要参数。在耐力运动训练前后,氧运输和利用能力对限制肌肉最大摄氧量的相对重要性尚不清楚。我们将主动肌肉最大摄氧量的直接测量与耐力运动训练前后肌肉细胞内的测量相结合。我们发现,增加 O2 的可用性并不能增加运动前的肌肉最大摄氧量,而增加 O2 的可用性确实增加了运动后的肌肉最大摄氧量。结果表明,在这些最初久坐的参与者中,耐力运动训练改变了常氧下肌肉最大摄氧量限制的基础,从利用氧的线粒体能力转变为向线粒体运输氧的能力。