Suppr超能文献

耐力运动训练改变了常氧条件下肌肉的限制因素,从利用 O 的能力转变为运输 O 的能力。

Endurance exercise training changes the limitation on muscle in normoxia from the capacity to utilize O to the capacity to transport O.

机构信息

Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.

Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, USA.

出版信息

J Physiol. 2024 Feb;602(3):445-459. doi: 10.1113/JP285650. Epub 2023 Dec 4.

Abstract

Maximal oxygen (O ) uptake ( ) is an important parameter with utility in health and disease. However, the relative importance of O transport and utilization capacities in limiting muscle before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscle pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venous (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation ( H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellular using an O  half-saturation pressure of 3.2 mmHg. Pre-training muscle was not significantly different across inspired O conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min , all q > 0.174), despite significantly greater muscle mean capillary-intracellular gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscle was significantly different across all inspired O conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellular gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle in normoxia from the mitochondrial capacity to utilize O to the capacity to transport O to the mitochondria. KEY POINTS: Maximal O uptake is an important parameter with utility in health and disease. The relative importance of O transport and utilization capacities in limiting muscle maximal O uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O uptake with the measurement of muscle intracellular before and after 8 weeks of endurance exercise training. We show that increasing O availability did not increase muscle maximal O uptake before training, whereas increasing O availability did increase muscle maximal O uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O uptake in normoxia from the mitochondrial capacity to utilize O to the capacity to transport O to the mitochondria.

摘要

最大摄氧量(VO2max)是健康和疾病中具有应用价值的一个重要参数。然而,在耐力运动训练前后,氧运输和利用能力对限制肌肉摄氧量的相对重要性尚不清楚。因此,本研究旨在确定最初久坐的参与者在耐力运动训练前后肌肉摄氧量的限制机制。在五名最初久坐的年轻男性中,在进行最大单腿伸膝运动(KE)时,通过桡动脉和股静脉(血液样本)、腿部血流(热稀释法)和肌红蛋白(Mb)去饱和度( H 磁共振波谱)来测量摄氧量,同时分别在运动前和运动后 8 周的 KE 训练(1 小时,每周 3 次)中,分别呼吸 12%、21%或 100%的 O2。通过将 O2 半饱和压力设为 3.2mmHg 将 Mb 去饱和度转换为细胞内 O2。尽管在常氧(34±3mmHg)和高氧(40±7mmHg)条件下肌肉毛细血管-细胞内的平均梯度明显大于低氧(29±5mmHg,两者均 q<0.024),但运动前肌肉摄氧量在不同吸入氧条件下没有显著差异(12%:0.47±0.10;21%:0.52±0.13;100%:0.54±0.01Lmin,所有 q>0.174)。运动后,所有吸入氧条件下的肌肉摄氧量均有显著差异(12%:0.59±0.11;21%:0.68±0.11;100%:0.76±0.09mmHg,所有 q<0.035),肌肉毛细血管-细胞内的平均梯度也有显著差异(12%:32±2mmHg;21%:37±2mmHg;100%:45±7mmHg,所有 q<0.029)。在这些最初久坐的参与者中,耐力运动训练改变了常氧下肌肉摄氧量限制的基础,从利用氧的线粒体能力转变为向线粒体运输氧的能力。关键点:最大摄氧量(VO2max)是健康和疾病中具有应用价值的一个重要参数。在耐力运动训练前后,氧运输和利用能力对限制肌肉最大摄氧量的相对重要性尚不清楚。我们将主动肌肉最大摄氧量的直接测量与耐力运动训练前后肌肉细胞内的测量相结合。我们发现,增加 O2 的可用性并不能增加运动前的肌肉最大摄氧量,而增加 O2 的可用性确实增加了运动后的肌肉最大摄氧量。结果表明,在这些最初久坐的参与者中,耐力运动训练改变了常氧下肌肉最大摄氧量限制的基础,从利用氧的线粒体能力转变为向线粒体运输氧的能力。

相似文献

10
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.
Cochrane Database Syst Rev. 2016 Mar 31;3(3):CD008796. doi: 10.1002/14651858.CD008796.pub3.

引用本文的文献

1
Cardiac output limits maximal oxygen consumption, but what limits maximal cardiac output?
Exp Physiol. 2025 May;110(5):666-674. doi: 10.1113/EP091594. Epub 2025 Apr 7.
3
The MDM2 SNP309 differentially impacts cardiorespiratory fitness in young healthy women and men.
Eur J Appl Physiol. 2025 May;125(5):1371-1383. doi: 10.1007/s00421-024-05682-1. Epub 2024 Dec 16.

本文引用的文献

1
Exercise training in COPD: muscle O transport plasticity.
Eur Respir J. 2021 Aug 19;58(2). doi: 10.1183/13993003.04146-2020. Print 2021 Aug.
3
A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy.
J Appl Physiol (1985). 2015 Mar 15;118(6):783-93. doi: 10.1152/japplphysiol.00458.2014. Epub 2015 Jan 15.
4
Increased blood-oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m.
Exp Physiol. 2014 Dec 1;99(12):1624-35. doi: 10.1113/expphysiol.2014.080820. Epub 2014 Aug 28.
5
Importance of mitochondrial P(O2) in maximal O2 transport and utilization: a theoretical analysis.
Respir Physiol Neurobiol. 2013 Dec 1;189(3):477-83. doi: 10.1016/j.resp.2013.08.020. Epub 2013 Sep 5.
7
Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans.
Mitochondrion. 2011 Mar;11(2):303-7. doi: 10.1016/j.mito.2010.12.006. Epub 2010 Dec 13.
8
Modeling O₂ transport as an integrated system limiting (.)V(O₂MAX).
Comput Methods Programs Biomed. 2011 Feb;101(2):109-14. doi: 10.1016/j.cmpb.2010.03.013. Epub 2010 May 18.
9
Intramyocellular oxygenation during ischemic muscle contractions in vivo.
Eur J Appl Physiol. 2009 Jun;106(3):333-43. doi: 10.1007/s00421-009-1021-x. Epub 2009 Mar 11.
10
On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass.
J Physiol. 2009 Jan 15;587(2):477-90. doi: 10.1113/jphysiol.2008.162271. Epub 2008 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验