Suppr超能文献

在人机交互中引发并识别面向任务的对话者困惑。

Invoking and identifying task-oriented interlocutor confusion in human-robot interaction.

作者信息

Li Na, Ross Robert

机构信息

School of Computer Science, Technological University, Dublin, Ireland.

出版信息

Front Robot AI. 2023 Nov 20;10:1244381. doi: 10.3389/frobt.2023.1244381. eCollection 2023.

Abstract

Successful conversational interaction with a social robot requires not only an assessment of a user's contribution to an interaction, but also awareness of their emotional and attitudinal states as the interaction unfolds. To this end, our research aims to systematically trigger, but then interpret human behaviors to track different states of potential user confusion in interaction so that systems can be primed to adjust their policies in light of users entering confusion states. In this paper, we present a detailed human-robot interaction study to prompt, investigate, and eventually detect confusion states in users. The study itself employs a Wizard-of-Oz (WoZ) style design with a Pepper robot to prompt confusion states for task-oriented dialogues in a well-defined manner. The data collected from 81 participants includes audio and visual data, from both the robot's perspective and the environment, as well as participant survey data. From these data, we evaluated the correlations of induced confusion conditions with multimodal data, including eye gaze estimation, head pose estimation, facial emotion detection, silence duration time, and user speech analysis-including emotion and pitch analysis. Analysis shows significant differences of participants' behaviors in states of confusion based on these signals, as well as a strong correlation between confusion conditions and participants own self-reported confusion scores. The paper establishes strong correlations between confusion levels and these observable features, and lays the ground or a more complete social and affect oriented strategy for task-oriented human-robot interaction. The contributions of this paper include the methodology applied, dataset, and our systematic analysis.

摘要

与社交机器人进行成功的对话互动不仅需要评估用户对互动的贡献,还需要在互动展开过程中了解他们的情绪和态度状态。为此,我们的研究旨在系统地触发并解读人类行为,以追踪互动中潜在用户困惑的不同状态,以便系统能够根据用户进入困惑状态的情况调整其策略。在本文中,我们展示了一项详细的人机交互研究,以引发、调查并最终检测用户的困惑状态。该研究本身采用了绿野仙踪(WoZ)风格的设计,使用派珀机器人以明确的方式引发面向任务对话中的困惑状态。从81名参与者收集的数据包括从机器人视角和环境获取的音频和视觉数据,以及参与者的调查数据。从这些数据中,我们评估了诱发的困惑状况与多模态数据之间的相关性,包括目光注视估计、头部姿势估计、面部情绪检测、沉默持续时间以及用户语音分析——包括情绪和音高分析。分析表明,基于这些信号,参与者在困惑状态下的行为存在显著差异,并且困惑状况与参与者自我报告的困惑分数之间存在很强的相关性。本文确立了困惑程度与这些可观察特征之间的紧密相关性,并为面向任务的人机交互奠定了更完整的社会和情感导向策略的基础。本文的贡献包括所应用的方法、数据集以及我们的系统分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a84/10694506/687a7e9562dc/frobt-10-1244381-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验