Suppr超能文献

用于心理健康的机器人远程医疗:一种改善人机互动的多模态方法。

Robotic Telemedicine for Mental Health: A Multimodal Approach to Improve Human-Robot Engagement.

作者信息

Lima Maria R, Wairagkar Maitreyee, Natarajan Nirupama, Vaitheswaran Sridhar, Vaidyanathan Ravi

机构信息

Department of Mechanical Engineering, Imperial College London, and UK Dementia Research Institute-Care Research and Technology Centre, London, United Kingdom.

Schizophrenia Research Foundation (SCARF), Chennai, India.

出版信息

Front Robot AI. 2021 Mar 18;8:618866. doi: 10.3389/frobt.2021.618866. eCollection 2021.

Abstract

COVID-19 has severely impacted mental health in vulnerable demographics, in particular older adults, who face unprecedented isolation. Consequences, while globally severe, are acutely pronounced in low- and middle-income countries (LMICs) confronting pronounced gaps in resources and clinician accessibility. Social robots are well-recognized for their potential to support mental health, yet user compliance (i.e., trust) demands seamless affective human-robot interactions; natural 'human-like' conversations are required in simple, inexpensive, deployable platforms. We present the design, development, and pilot testing of a multimodal robotic framework fusing verbal (contextual speech) and nonverbal (facial expressions) social cues, aimed to improve engagement in human-robot interaction and ultimately facilitate mental health telemedicine during and beyond the COVID-19 pandemic. We report the design optimization of a hybrid face robot, which combines digital facial expressions based on mathematical affect space mapping with static 3D facial features. We further introduce a contextual virtual assistant with integrated cloud-based AI coupled to the robot's facial representation of emotions, such that the robot adapts its emotional response to users' speech in real-time. Experiments with healthy participants demonstrate emotion recognition exceeding 90% for happy, tired, sad, angry, surprised and stern/disgusted robotic emotions. When separated, stern and disgusted are occasionally transposed (70%+ accuracy overall) but are easily distinguishable from other emotions. A qualitative user experience analysis indicates overall enthusiastic and engaging reception to human-robot multimodal interaction with the new framework. The robot has been modified to enable clinical telemedicine for cognitive engagement with older adults and people with dementia (PwD) in LMICs. The mechanically simple and low-cost social robot has been deployed in pilot tests to support older individuals and PwD at the Schizophrenia Research Foundation (SCARF) in Chennai, India. A procedure for deployment addressing challenges in cultural acceptance, end-user acclimatization and resource allocation is further introduced. Results indicate strong promise to stimulate human-robot psychosocial interaction through the hybrid-face robotic system. Future work is targeting deployment for telemedicine to mitigate the mental health impact of COVID-19 on older adults and PwD in both LMICs and higher income regions.

摘要

新冠疫情对弱势群体的心理健康产生了严重影响,尤其是老年人,他们面临着前所未有的隔离状态。虽然全球范围内后果都很严重,但在资源和临床医生可及性存在显著差距的低收入和中等收入国家(LMICs),这些后果更为突出。社交机器人因其支持心理健康的潜力而广受认可,但用户的依从性(即信任)需要无缝的情感人机交互;在简单、廉价、可部署的平台上需要自然的“类人”对话。我们展示了一个融合言语(情境语音)和非言语(面部表情)社交线索的多模态机器人框架的设计、开发和试点测试,旨在改善人机交互中的参与度,并最终在新冠疫情期间及之后促进心理健康远程医疗。我们报告了一种混合面部机器人的设计优化,该机器人将基于数学情感空间映射的数字面部表情与静态3D面部特征相结合。我们还引入了一个情境虚拟助手,它集成了基于云的人工智能,并与机器人的面部情绪表示相耦合,使机器人能够实时根据用户的语音调整其情绪反应。对健康参与者的实验表明,对于机器人表现出的开心、疲惫、悲伤、愤怒、惊讶和严肃/厌恶等情绪,情绪识别准确率超过90%。当区分严肃和厌恶时,偶尔会出现混淆(总体准确率70%以上),但它们很容易与其他情绪区分开来。一项定性用户体验分析表明,用户对使用新框架的人机多模态交互总体持热情和积极的态度。该机器人已进行了改进,以实现为LMICs中老年人和痴呆症患者(PwD)提供认知参与的临床远程医疗。这种机械结构简单且成本低廉的社交机器人已在印度钦奈精神分裂症研究基金会(SCARF)进行试点测试,以支持老年人和PwD。我们还进一步介绍了一种针对文化接受、终端用户适应和资源分配等挑战的部署程序。结果表明,通过混合面部机器人系统刺激人机心理社会交互具有很大潜力。未来的工作目标是将其用于远程医疗,以减轻新冠疫情对LMICs和高收入地区老年人及PwD心理健康的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb2/8014955/9cd44785918e/frobt-08-618866-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验