Suppr超能文献

评估过去几十年生物质燃烧对亚热带亚马孙地区颗粒物成分的影响:文献综述、遥感、化学形态分析和机器学习应用。

Assessing over decadal biomass burning influence on particulate matter composition in subequatorial Amazon: literature review, remote sensing, chemical speciation and machine learning application.

机构信息

Pontifical Catholic University of Rio de Janeiro (PUC- Rio), Department of Chemistry, Rua Marques de São Vicente 225, Gávea, 22451-900 Rio de Janeiro, RJ, Brazil.

Oswaldo Cruz Foundation, National School of Public Health, Rua Leopoldo Bulhões, 1480, Manguinhos, 21041-210 Rio de Janeiro, RJ, Brazil.

出版信息

An Acad Bras Cienc. 2023 Dec 4;95(suppl 2):e20220932. doi: 10.1590/0001-3765202320220932. eCollection 2023.

Abstract

A study on aerosols in the Brazilian subequatorial Amazon region, Tangará da Serra (TS) and Alta Floresta (AF) was conducted and compared to findings in an additional site with background characteristics (Manaus, AM). TS and AF counties suffer from intense biomass burning periods in the dry season, and it accounts for high levels of particles in the atmosphere. Chemical characterization of fine and coarse particulate matter (PM) was performed to quantify water-soluble ions (WSI) and black carbon (BC). The importance of explanatory variables was assessed using three machine learning techniques. Average concentrations of PM in AF and TS were similar (PM2.0, 17±10 µg m-3 (AF) and 16±11 µg m-3 (TS) and PM10-2.0, 13±5 µg m-3 (AF) and 11±7 µg m-3 (TS)), but higher than the background site. BC and SO4 2- were the prevalent components as they represented 27%-68% of particulates chemical composition. The combination of the machine learning techniques provided a further understanding of the pathways for PM concentration variability, and the results highlighted the influence of biomass burning for key sample groups and periods. PM2.0, BC, and most WSI presented higher concentrations in the dry season, providing further support for the influence of biomass burning.

摘要

对巴西亚热带亚马逊地区的坦加拉达塞拉(TS)和阿尔塔佛罗里达州(AF)的气溶胶进行了研究,并与背景特征的另一个地点(玛瑙斯,AM)的发现进行了比较。TS 和 AF 县在旱季遭受强烈的生物质燃烧期,这导致大气中的颗粒物水平很高。对细颗粒和粗颗粒物质(PM)进行了化学特征分析,以量化水溶性离子(WSI)和黑碳(BC)。使用三种机器学习技术评估了解释变量的重要性。AF 和 TS 中的 PM 平均浓度相似(PM2.0,17±10 µg m-3(AF)和 16±11 µg m-3(TS)和 PM10-2.0,13±5 µg m-3(AF)和 11±7 µg m-3(TS)),但高于背景地点。BC 和 SO4 2-是主要成分,占颗粒物化学成分的 27%-68%。机器学习技术的组合提供了对 PM 浓度变化途径的进一步了解,结果突出了生物质燃烧对关键样本组和时期的影响。PM2.0、BC 和大多数 WSI 在旱季的浓度更高,进一步证明了生物质燃烧的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验