Suppr超能文献

物联网环境下基于语义感知对比学习的无标签医学图像质量评估

Label-Free Medical Image Quality Evaluation by Semantics-Aware Contrastive Learning in IoMT.

作者信息

Yi Dewei, Hua Yining, Murchie Peter, Kumar Sharma Pradip

出版信息

IEEE J Biomed Health Inform. 2025 Apr;29(4):2335-2344. doi: 10.1109/JBHI.2023.3340201. Epub 2025 Apr 4.

Abstract

With the rapid development of the Internet-of-Medical-Things (IoMT) in recent years, it has emerged as a promising solution to alleviate the workload of medical staff, particularly in the field of Medical Image Quality Assessment (MIQA). By deploying MIQA based on IoMT, it proves to be highly valuable in assisting the diagnosis and treatment of various types of medical images, such as fundus images, ultrasound images, and dermoscopic images. However, traditional MIQA models necessitate a substantial number of labeled medical images to be effective, which poses a challenge in acquiring a sufficient training dataset. To address this issue, we present a label-free MIQA model developed through a zero-shot learning approach. This paper introduces a Semantics-Aware Contrastive Learning (SCL) model that can effectively generalise quality assessment to diverse medical image types. The proposed method integrates features extracted from zero-shot learning, the spatial domain, and the frequency domain. Zero-shot learning is achieved through a tailored Contrastive Language-Image Pre-training (CLIP) model. Natural Scene Statistics (NSS) and patch-based features are extracted in the spatial domain, while frequency features are hierarchically extracted from both local and global levels. All of this information is utilised to derive a final quality score for a medical image. To ensure a comprehensive evaluation, we not only utilise two existing datasets, EyeQ and LiverQ, but also create a dataset specifically for skin image quality assessment. As a result, our SCL method undergoes extensive evaluation using all three medical image quality datasets, demonstrating its superiority over advanced models.

摘要

近年来,随着医疗物联网(IoMT)的快速发展,它已成为减轻医务人员工作量的一种有前景的解决方案,特别是在医学图像质量评估(MIQA)领域。通过基于IoMT部署MIQA,事实证明它在辅助诊断和治疗各种医学图像(如眼底图像、超声图像和皮肤镜图像)方面具有很高的价值。然而,传统的MIQA模型需要大量带标签的医学图像才能有效,这在获取足够的训练数据集方面构成了挑战。为了解决这个问题,我们提出了一种通过零样本学习方法开发的无标签MIQA模型。本文介绍了一种语义感知对比学习(SCL)模型,它可以有效地将质量评估推广到不同类型的医学图像。所提出的方法整合了从零样本学习、空间域和频率域提取的特征。零样本学习是通过定制的对比语言-图像预训练(CLIP)模型实现的。在空间域中提取自然场景统计(NSS)和基于补丁的特征,而频率特征则从局部和全局两个层面进行分层提取。所有这些信息都被用于得出医学图像的最终质量分数。为了确保全面评估,我们不仅使用了两个现有数据集EyeQ和LiverQ,还专门创建了一个用于皮肤图像质量评估的数据集。结果,我们的SCL方法使用所有三个医学图像质量数据集进行了广泛评估,证明了其优于先进模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验